Not enough data to create a plot.
Try a different view from the menu above.
Xu, Yongjun
GTDE: Grouped Training with Decentralized Execution for Multi-agent Actor-Critic
Li, Mengxian, Wang, Qi, Xu, Yongjun
The rapid advancement of multi-agent reinforcement learning (MARL) has given rise to diverse training paradigms to learn the policies of each agent in the multi-agent system. The paradigms of decentralized training and execution (DTDE) and centralized training with decentralized execution (CTDE) have been proposed and widely applied. However, as the number of agents increases, the inherent limitations of these frameworks significantly degrade the performance metrics, such as win rate, total reward, etc. To reduce the influence of the increasing number of agents on the performance metrics, we propose a novel training paradigm of grouped training decentralized execution (GTDE). This framework eliminates the need for a centralized module and relies solely on local information, effectively meeting the training requirements of large-scale multi-agent systems. Specifically, we first introduce an adaptive grouping module, which divides each agent into different groups based on their observation history. To implement end-to-end training, GTDE uses Gumbel-Sigmoid for efficient point-to-point sampling on the grouping distribution while ensuring gradient backpropagation. To adapt to the uncertainty in the number of members in a group, two methods are used to implement a group information aggregation module that merges member information within the group. Empirical results show that in a cooperative environment with 495 agents, GTDE increased the total reward by an average of 382\% compared to the baseline. In a competitive environment with 64 agents, GTDE achieved a 100\% win rate against the baseline.
Context-Enhanced Multi-View Trajectory Representation Learning: Bridging the Gap through Self-Supervised Models
Qian, Tangwen, Li, Junhe, Chen, Yile, Cong, Gao, Sun, Tao, Wang, Fei, Xu, Yongjun
Modeling trajectory data with generic-purpose dense representations has become a prevalent paradigm for various downstream applications, such as trajectory classification, travel time estimation and similarity computation. However, existing methods typically rely on trajectories from a single spatial view, limiting their ability to capture the rich contextual information that is crucial for gaining deeper insights into movement patterns across different geospatial contexts. To this end, we propose MVTraj, a novel multi-view modeling method for trajectory representation learning. MVTraj integrates diverse contextual knowledge, from GPS to road network and points-of-interest to provide a more comprehensive understanding of trajectory data. To align the learning process across multiple views, we utilize GPS trajectories as a bridge and employ self-supervised pretext tasks to capture and distinguish movement patterns across different spatial views. Following this, we treat trajectories from different views as distinct modalities and apply a hierarchical cross-modal interaction module to fuse the representations, thereby enriching the knowledge derived from multiple sources. Extensive experiments on real-world datasets demonstrate that MVTraj significantly outperforms existing baselines in tasks associated with various spatial views, validating its effectiveness and practical utility in spatio-temporal modeling.
Online Policy Distillation with Decision-Attention
Yu, Xinqiang, Yang, Chuanguang, Yu, Chengqing, Huang, Libo, An, Zhulin, Xu, Yongjun
Policy Distillation (PD) has become an effective method to improve deep reinforcement learning tasks. The core idea of PD is to distill policy knowledge from a teacher agent to a student agent. However, the teacher-student framework requires a well-trained teacher model which is computationally expensive.In the light of online knowledge distillation, we study the knowledge transfer between different policies that can learn diverse knowledge from the same environment.In this work, we propose Online Policy Distillation (OPD) with Decision-Attention (DA), an online learning framework in which different policies operate in the same environment to learn different perspectives of the environment and transfer knowledge to each other to obtain better performance together. With the absence of a well-performance teacher policy, the group-derived targets play a key role in transferring group knowledge to each student policy. However, naive aggregation functions tend to cause student policies quickly homogenize. To address the challenge, we introduce the Decision-Attention module to the online policies distillation framework. The Decision-Attention module can generate a distinct set of weights for each policy to measure the importance of group members. We use the Atari platform for experiments with various reinforcement learning algorithms, including PPO and DQN. In different tasks, our method can perform better than an independent training policy on both PPO and DQN algorithms. This suggests that our OPD-DA can transfer knowledge between different policies well and help agents obtain more rewards.
M-RAG: Reinforcing Large Language Model Performance through Retrieval-Augmented Generation with Multiple Partitions
Wang, Zheng, Teo, Shu Xian, Ouyang, Jieer, Xu, Yongjun, Shi, Wei
Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs) by retrieving relevant memories from an external database. However, existing RAG methods typically organize all memories in a whole database, potentially limiting focus on crucial memories and introducing noise. In this paper, we introduce a multiple partition paradigm for RAG (called M-RAG), where each database partition serves as a basic unit for RAG execution. Based on this paradigm, we propose a novel framework that leverages LLMs with Multi-Agent Reinforcement Learning to optimize different language generation tasks explicitly. Through comprehensive experiments conducted on seven datasets, spanning three language generation tasks and involving three distinct language model architectures, we confirm that M-RAG consistently outperforms various baseline methods, achieving improvements of 11%, 8%, and 12% for text summarization, machine translation, and dialogue generation, respectively.
DFGNN: Dual-frequency Graph Neural Network for Sign-aware Feedback
Wu, Yiqing, Xie, Ruobing, Zhang, Zhao, Zhang, Xu, Zhuang, Fuzhen, Lin, Leyu, Kang, Zhanhui, Xu, Yongjun
The graph-based recommendation has achieved great success in recent years. However, most existing graph-based recommendations focus on capturing user preference based on positive edges/feedback, while ignoring negative edges/feedback (e.g., dislike, low rating) that widely exist in real-world recommender systems. How to utilize negative feedback in graph-based recommendations still remains underexplored. In this study, we first conducted a comprehensive experimental analysis and found that (1) existing graph neural networks are not well-suited for modeling negative feedback, which acts as a high-frequency signal in a user-item graph. (2) The graph-based recommendation suffers from the representation degeneration problem. Based on the two observations, we propose a novel model that models positive and negative feedback from a frequency filter perspective called Dual-frequency Graph Neural Network for Sign-aware Recommendation (DFGNN). Specifically, in DFGNN, the designed dual-frequency graph filter (DGF) captures both low-frequency and high-frequency signals that contain positive and negative feedback. Furthermore, the proposed signed graph regularization is applied to maintain the user/item embedding uniform in the embedding space to alleviate the representation degeneration problem. Additionally, we conduct extensive experiments on real-world datasets and demonstrate the effectiveness of the proposed model. Codes of our model will be released upon acceptance.
GinAR: An End-To-End Multivariate Time Series Forecasting Model Suitable for Variable Missing
Yu, Chengqing, Wang, Fei, Shao, Zezhi, Qian, Tangwen, Zhang, Zhao, Wei, Wei, Xu, Yongjun
Multivariate time series forecasting (MTSF) is crucial for decision-making to precisely forecast the future values/trends, based on the complex relationships identified from historical observations of multiple sequences. Recently, Spatial-Temporal Graph Neural Networks (STGNNs) have gradually become the theme of MTSF model as their powerful capability in mining spatial-temporal dependencies, but almost of them heavily rely on the assumption of historical data integrity. In reality, due to factors such as data collector failures and time-consuming repairment, it is extremely challenging to collect the whole historical observations without missing any variable. In this case, STGNNs can only utilize a subset of normal variables and easily suffer from the incorrect spatial-temporal dependency modeling issue, resulting in the degradation of their forecasting performance. To address the problem, in this paper, we propose a novel Graph Interpolation Attention Recursive Network (named GinAR) to precisely model the spatial-temporal dependencies over the limited collected data for forecasting. In GinAR, it consists of two key components, that is, interpolation attention and adaptive graph convolution to take place of the fully connected layer of simple recursive units, and thus are capable of recovering all missing variables and reconstructing the correct spatial-temporal dependencies for recursively modeling of multivariate time series data, respectively. Extensive experiments conducted on five real-world datasets demonstrate that GinAR outperforms 11 SOTA baselines, and even when 90% of variables are missing, it can still accurately predict the future values of all variables.
Self-Improvement Programming for Temporal Knowledge Graph Question Answering
Chen, Zhuo, Zhang, Zhao, Li, Zixuan, Wang, Fei, Zeng, Yutao, Jin, Xiaolong, Xu, Yongjun
Temporal Knowledge Graph Question Answering (TKGQA) aims to answer questions with temporal intent over Temporal Knowledge Graphs (TKGs). The core challenge of this task lies in understanding the complex semantic information regarding multiple types of time constraints (e.g., before, first) in questions. Existing end-to-end methods implicitly model the time constraints by learning time-aware embeddings of questions and candidate answers, which is far from understanding the question comprehensively. Motivated by semantic-parsing-based approaches that explicitly model constraints in questions by generating logical forms with symbolic operators, we design fundamental temporal operators for time constraints and introduce a novel self-improvement Programming method for TKGQA (Prog-TQA). Specifically, Prog-TQA leverages the in-context learning ability of Large Language Models (LLMs) to understand the combinatory time constraints in the questions and generate corresponding program drafts with a few examples given. Then, it aligns these drafts to TKGs with the linking module and subsequently executes them to generate the answers. To enhance the ability to understand questions, Prog-TQA is further equipped with a self-improvement strategy to effectively bootstrap LLMs using high-quality self-generated drafts. Extensive experiments demonstrate the superiority of the proposed Prog-TQA on MultiTQ and CronQuestions datasets, especially in the Hits@1 metric.
AdapTraj: A Multi-Source Domain Generalization Framework for Multi-Agent Trajectory Prediction
Qian, Tangwen, Chen, Yile, Cong, Gao, Xu, Yongjun, Wang, Fei
Multi-agent trajectory prediction, as a critical task in modeling complex interactions of objects in dynamic systems, has attracted significant research attention in recent years. Despite the promising advances, existing studies all follow the assumption that data distribution observed during model learning matches that encountered in real-world deployments. However, this assumption often does not hold in practice, as inherent distribution shifts might exist in the mobility patterns for deployment environments, thus leading to poor domain generalization and performance degradation. Consequently, it is appealing to leverage trajectories from multiple source domains to mitigate such discrepancies for multi-agent trajectory prediction task. However, the development of multi-source domain generalization in this task presents two notable issues: (1) negative transfer; (2) inadequate modeling for external factors. To address these issues, we propose a new causal formulation to explicitly model four types of features: domain-invariant and domain-specific features for both the focal agent and neighboring agents. Building upon the new formulation, we propose AdapTraj, a multi-source domain generalization framework specifically tailored for multi-agent trajectory prediction. AdapTraj serves as a plug-and-play module that is adaptable to a variety of models. Extensive experiments on four datasets with different domains demonstrate that AdapTraj consistently outperforms other baselines by a substantial margin.
Dynamic Frequency Domain Graph Convolutional Network for Traffic Forecasting
Li, Yujie, Shao, Zezhi, Xu, Yongjun, Qiu, Qiang, Cao, Zhaogang, Wang, Fei
Complex spatial dependencies in transportation networks make traffic prediction extremely challenging. Much existing work is devoted to learning dynamic graph structures among sensors, and the strategy of mining spatial dependencies from traffic data, known as data-driven, tends to be an intuitive and effective approach. However, Time-Shift of traffic patterns and noise induced by random factors hinder data-driven spatial dependence modeling. In this paper, we propose a novel dynamic frequency domain graph convolution network (DFDGCN) to capture spatial dependencies. Specifically, we mitigate the effects of time-shift by Fourier transform, and introduce the identity embedding of sensors and time embedding when capturing data for graph learning since traffic data with noise is not entirely reliable. The graph is combined with static predefined and self-adaptive graphs during graph convolution to predict future traffic data through classical causal convolutions. Extensive experiments on four real-world datasets demonstrate that our model is effective and outperforms the baselines.
Exploring Progress in Multivariate Time Series Forecasting: Comprehensive Benchmarking and Heterogeneity Analysis
Shao, Zezhi, Wang, Fei, Xu, Yongjun, Wei, Wei, Yu, Chengqing, Zhang, Zhao, Yao, Di, Jin, Guangyin, Cao, Xin, Cong, Gao, Jensen, Christian S., Cheng, Xueqi
Multivariate Time Series (MTS) widely exists in real-word complex systems, such as traffic and energy systems, making their forecasting crucial for understanding and influencing these systems. Recently, deep learning-based approaches have gained much popularity for effectively modeling temporal and spatial dependencies in MTS, specifically in Long-term Time Series Forecasting (LTSF) and Spatial-Temporal Forecasting (STF). However, the fair benchmarking issue and the choice of technical approaches have been hotly debated in related work. Such controversies significantly hinder our understanding of progress in this field. Thus, this paper aims to address these controversies to present insights into advancements achieved. To resolve benchmarking issues, we introduce BasicTS, a benchmark designed for fair comparisons in MTS forecasting. BasicTS establishes a unified training pipeline and reasonable evaluation settings, enabling an unbiased evaluation of over 30 popular MTS forecasting models on more than 18 datasets. Furthermore, we highlight the heterogeneity among MTS datasets and classify them based on temporal and spatial characteristics. We further prove that neglecting heterogeneity is the primary reason for generating controversies in technical approaches. Moreover, based on the proposed BasicTS and rich heterogeneous MTS datasets, we conduct an exhaustive and reproducible performance and efficiency comparison of popular models, providing insights for researchers in selecting and designing MTS forecasting models.