Not enough data to create a plot.
Try a different view from the menu above.
Xu, Yangyang
Asynchronous parallel primal-dual block update methods
Xu, Yangyang
Recent several years have witnessed the surge of asynchronous (async-) parallel computing methods due to the extremely big data involved in many modern applications and also the advancement of multi-core machines and computer clusters. In optimization, most works about async-parallel methods are on unconstrained problems or those with block separable constraints. In this paper, we propose an async-parallel method based on block coordinate update (BCU) for solving convex problems with nonseparable linear constraint. Running on a single node, the method becomes a novel randomized primal-dual BCU with adaptive stepsize for multi-block affinely constrained problems. For these problems, Gauss-Seidel cyclic primal-dual BCU needs strong convexity to have convergence. On the contrary, merely assuming convexity, we show that the objective value sequence generated by the proposed algorithm converges in probability to the optimal value and also the constraint residual to zero. In addition, we establish an ergodic $O(1/k)$ convergence result, where $k$ is the number of iterations. Numerical experiments are performed to demonstrate the efficiency of the proposed method and significantly better speed-up performance than its sync-parallel counterpart.
Randomized Primal-Dual Proximal Block Coordinate Updates
Gao, Xiang, Xu, Yangyang, Zhang, Shuzhong
In this paper we propose a randomized primal-dual proximal block coordinate updating framework for a general multi-block convex optimization model with coupled objective function and linear constraints. Assuming mere convexity, we establish its $O(1/t)$ convergence rate in terms of the objective value and feasibility measure. The framework includes several existing algorithms as special cases such as a primal-dual method for bilinear saddle-point problems (PD-S), the proximal Jacobian ADMM (Prox-JADMM) and a randomized variant of the ADMM method for multi-block convex optimization. Our analysis recovers and/or strengthens the convergence properties of several existing algorithms. For example, for PD-S our result leads to the same order of convergence rate without the previously assumed boundedness condition on the constraint sets, and for Prox-JADMM the new result provides convergence rate in terms of the objective value and the feasibility violation. It is well known that the original ADMM may fail to converge when the number of blocks exceeds two. Our result shows that if an appropriate randomization procedure is invoked to select the updating blocks, then a sublinear rate of convergence in expectation can be guaranteed for multi-block ADMM, without assuming any strong convexity. The new approach is also extended to solve problems where only a stochastic approximation of the (sub-)gradient of the objective is available, and we establish an $O(1/\sqrt{t})$ convergence rate of the extended approach for solving stochastic programming.
A Primer on Coordinate Descent Algorithms
Shi, Hao-Jun Michael, Tu, Shenyinying, Xu, Yangyang, Yin, Wotao
This monograph presents a class of algorithms called coordinate descent algorithms for mathematicians, statisticians, and engineers outside the field of optimization. This particular class of algorithms has recently gained popularity due to their effectiveness in solving large-scale optimization problems in machine learning, compressed sensing, image processing, and computational statistics. Coordinate descent algorithms solve optimization problems by successively minimizing along each coordinate or coordinate hyperplane, which is ideal for parallelized and distributed computing. Avoiding detailed technicalities and proofs, this monograph gives relevant theory and examples for practitioners to effectively apply coordinate descent to modern problems in data science and engineering.
Coordinate Friendly Structures, Algorithms and Applications
Peng, Zhimin, Wu, Tianyu, Xu, Yangyang, Yan, Ming, Yin, Wotao
This paper focuses on coordinate update methods, which are useful for solving problems involving large or high-dimensional datasets. They decompose a problem into simple subproblems, where each updates one, or a small block of, variables while fixing others. These methods can deal with linear and nonlinear mappings, smooth and nonsmooth functions, as well as convex and nonconvex problems. In addition, they are easy to parallelize. The great performance of coordinate update methods depends on solving simple sub-problems. To derive simple subproblems for several new classes of applications, this paper systematically studies coordinate-friendly operators that perform low-cost coordinate updates. Based on the discovered coordinate friendly operators, as well as operator splitting techniques, we obtain new coordinate update algorithms for a variety of problems in machine learning, image processing, as well as sub-areas of optimization. Several problems are treated with coordinate update for the first time in history. The obtained algorithms are scalable to large instances through parallel and even asynchronous computing. We present numerical examples to illustrate how effective these algorithms are.
Accelerated first-order primal-dual proximal methods for linearly constrained composite convex programming
Xu, Yangyang
Motivated by big data applications, first-order methods have been extremely popular in recent years. However, naive gradient methods generally converge slowly. Hence, much efforts have been made to accelerate various first-order methods. This paper proposes two accelerated methods towards solving structured linearly constrained convex programming, for which we assume composite convex objective. The first method is the accelerated linearized augmented Lagrangian method (LALM). At each update to the primal variable, it allows linearization to the differentiable function and also the augmented term, and thus it enables easy subproblems. Assuming merely weak convexity, we show that LALM owns $O(1/t)$ convergence if parameters are kept fixed during all the iterations and can be accelerated to $O(1/t^2)$ if the parameters are adapted, where $t$ is the number of total iterations. The second method is the accelerated linearized alternating direction method of multipliers (LADMM). In addition to the composite convexity, it further assumes two-block structure on the objective. Different from classic ADMM, our method allows linearization to the objective and also augmented term to make the update simple. Assuming strong convexity on one block variable, we show that LADMM also enjoys $O(1/t^2)$ convergence with adaptive parameters. This result is a significant improvement over that in [Goldstein et. al, SIIMS'14], which requires strong convexity on both block variables and no linearization to the objective or augmented term. Numerical experiments are performed on quadratic programming, image denoising, and support vector machine. The proposed accelerated methods are compared to nonaccelerated ones and also existing accelerated methods. The results demonstrate the validness of acceleration and superior performance of the proposed methods over existing ones.
ARock: an Algorithmic Framework for Asynchronous Parallel Coordinate Updates
Peng, Zhimin, Xu, Yangyang, Yan, Ming, Yin, Wotao
Finding a fixed point to a nonexpansive operator, i.e., $x^*=Tx^*$, abstracts many problems in numerical linear algebra, optimization, and other areas of scientific computing. To solve fixed-point problems, we propose ARock, an algorithmic framework in which multiple agents (machines, processors, or cores) update $x$ in an asynchronous parallel fashion. Asynchrony is crucial to parallel computing since it reduces synchronization wait, relaxes communication bottleneck, and thus speeds up computing significantly. At each step of ARock, an agent updates a randomly selected coordinate $x_i$ based on possibly out-of-date information on $x$. The agents share $x$ through either global memory or communication. If writing $x_i$ is atomic, the agents can read and write $x$ without memory locks. Theoretically, we show that if the nonexpansive operator $T$ has a fixed point, then with probability one, ARock generates a sequence that converges to a fixed points of $T$. Our conditions on $T$ and step sizes are weaker than comparable work. Linear convergence is also obtained. We propose special cases of ARock for linear systems, convex optimization, machine learning, as well as distributed and decentralized consensus problems. Numerical experiments of solving sparse logistic regression problems are presented.
Proximal gradient method for huberized support vector machine
Xu, Yangyang, Akrotirianakis, Ioannis, Chakraborty, Amit
The Support Vector Machine (SVM) has been used in a wide variety of classification problems. The original SVM uses the hinge loss function, which is non-differentiable and makes the problem difficult to solve in particular for regularized SVMs, such as with $\ell_1$-regularization. This paper considers the Huberized SVM (HSVM), which uses a differentiable approximation of the hinge loss function. We first explore the use of the Proximal Gradient (PG) method to solving binary-class HSVM (B-HSVM) and then generalize it to multi-class HSVM (M-HSVM). Under strong convexity assumptions, we show that our algorithm converges linearly. In addition, we give a finite convergence result about the support of the solution, based on which we further accelerate the algorithm by a two-stage method. We present extensive numerical experiments on both synthetic and real datasets which demonstrate the superiority of our methods over some state-of-the-art methods for both binary- and multi-class SVMs.
Alternating direction method of multipliers for regularized multiclass support vector machines
Xu, Yangyang, Akrotirianakis, Ioannis, Chakraborty, Amit
The support vector machine (SVM) was originally designed for binary classifications. A lot of effort has been put to generalize the binary SVM to multiclass SVM (MSVM) which are more complex problems. Initially, MSVMs were solved by considering their dual formulations which are quadratic programs and can be solved by standard second-order methods. However, the duals of MSVMs with regularizers are usually more difficult to formulate and computationally very expensive to solve. This paper focuses on several regularized MSVMs and extends the alternating direction method of multiplier (ADMM) to these MSVMs. Using a splitting technique, all considered MSVMs are written as two-block convex programs, for which the ADMM has global convergence guarantees. Numerical experiments on synthetic and real data demonstrate the high efficiency and accuracy of our algorithms.
Block stochastic gradient iteration for convex and nonconvex optimization
Xu, Yangyang, Yin, Wotao
The stochastic gradient (SG) method can minimize an objective function composed of a large number of differentiable functions, or solve a stochastic optimization problem, to a moderate accuracy. The block coordinate descent/update (BCD) method, on the other hand, handles problems with multiple blocks of variables by updating them one at a time; when the blocks of variables are easier to update individually than together, BCD has a lower per-iteration cost. This paper introduces a method that combines the features of SG and BCD for problems with many components in the objective and with multiple (blocks of) variables. Specifically, a block stochastic gradient (BSG) method is proposed for solving both convex and nonconvex programs. At each iteration, BSG approximates the gradient of the differentiable part of the objective by randomly sampling a small set of data or sampling a few functions from the sum term in the objective, and then, using those samples, it updates all the blocks of variables in either a deterministic or a randomly shuffled order. Its convergence for both convex and nonconvex cases are established in different senses. In the convex case, the proposed method has the same order of convergence rate as the SG method. In the nonconvex case, its convergence is established in terms of the expected violation of a first-order optimality condition. The proposed method was numerically tested on problems including stochastic least squares and logistic regression, which are convex, as well as low-rank tensor recovery and bilinear logistic regression, which are nonconvex.