Plotting

 Xu, Yang


Evaluation of Machine Translation Based on Semantic Dependencies and Keywords

arXiv.org Artificial Intelligence

In view of the fact that most of the existing machine translation evaluation algorithms only consider the lexical and syntactic information, but ignore the deep semantic information contained in the sentence, this paper proposes a computational method for evaluating the semantic correctness of machine translations based on reference translations and incorporating semantic dependencies and sentence keyword information. Use the language technology platform developed by the Social Computing and Information Retrieval Research Center of Harbin Institute of Technology to conduct semantic dependency analysis and keyword analysis on sentences, and obtain semantic dependency graphs, keywords, and weight information corresponding to keywords. It includes all word information with semantic dependencies in the sentence and keyword information that affects semantic information. Construct semantic association pairs including word and dependency multi-features. The key semantics of the sentence cannot be highlighted in the semantic information extracted through semantic dependence, resulting in vague semantics analysis. Therefore, the sentence keyword information is also included in the scope of machine translation semantic evaluation. To achieve a comprehensive and in-depth evaluation of the semantic correctness of sentences, the experimental results show that the accuracy of the evaluation algorithm has been improved compared with similar methods, and it can more accurately measure the semantic correctness of machine translation.


Toward Informal Language Processing: Knowledge of Slang in Large Language Models

arXiv.org Artificial Intelligence

Recent advancement in large language models (LLMs) has offered a strong potential for natural language systems to process informal language. A representative form of informal language is slang, used commonly in daily conversations and online social media. To date, slang has not been comprehensively evaluated in LLMs due partly to the absence of a carefully designed and publicly accessible benchmark. Using movie subtitles, we construct a dataset that supports evaluation on a diverse set of tasks pertaining to automatic processing of slang. For both evaluation and finetuning, we show the effectiveness of our dataset on two core applications: 1) slang detection, and 2) identification of regional and historical sources of slang from natural sentences. We also show how our dataset can be used to probe the output distributions of LLMs for interpretive insights. We find that while LLMs such as GPT-4 achieve good performance in a zero-shot setting, smaller BERT-like models finetuned on our dataset achieve comparable performance. Furthermore, we show that our dataset enables finetuning of LLMs such as GPT-3.5 that achieve substantially better performance than strong zero-shot baselines. Our work offers a comprehensive evaluation and a high-quality benchmark on English slang based on the OpenSubtitles corpus, serving both as a publicly accessible resource and a platform for applying tools for informal language processing.


OmniNxt: A Fully Open-source and Compact Aerial Robot with Omnidirectional Visual Perception

arXiv.org Artificial Intelligence

Adopting omnidirectional Field of View (FoV) cameras in aerial robots vastly improves perception ability, significantly advancing aerial robotics's capabilities in inspection, reconstruction, and rescue tasks. However, such sensors also elevate system complexity, e.g., hardware design, and corresponding algorithm, which limits researchers from utilizing aerial robots with omnidirectional FoV in their research. To bridge this gap, we propose OmniNxt, a fully open-source aerial robotics platform with omnidirectional perception. We design a high-performance flight controller NxtPX4 and a multi-fisheye camera set for OmniNxt. Meanwhile, the compatible software is carefully devised, which empowers OmniNxt to achieve accurate localization and real-time dense mapping with limited computation resource occupancy. We conducted extensive real-world experiments to validate the superior performance of OmniNxt in practical applications. All the hardware and software are open-access at https://github.com/HKUST-Aerial-Robotics/OmniNxt, and we provide docker images of each crucial module in the proposed system. Project page: https://hkust-aerial-robotics.github.io/OmniNxt.


Beyond Static Evaluation: A Dynamic Approach to Assessing AI Assistants' API Invocation Capabilities

arXiv.org Artificial Intelligence

With the rise of Large Language Models (LLMs), AI assistants' ability to utilize tools, especially through API calls, has advanced notably. This progress has necessitated more accurate evaluation methods. Many existing studies adopt static evaluation, where they assess AI assistants' API call based on pre-defined dialogue histories. However, such evaluation method can be misleading, as an AI assistant might fail in generating API calls from preceding human interaction in real cases. Instead of the resource-intensive method of direct human-machine interactions, we propose Automated Dynamic Evaluation (AutoDE) to assess an assistant's API call capability without human involvement. In our framework, we endeavor to closely mirror genuine human conversation patterns in human-machine interactions, using a LLM-based user agent, equipped with a user script to ensure human alignment. Experimental results highlight that AutoDE uncovers errors overlooked by static evaluations, aligning more closely with human assessment. Testing four AI assistants using our crafted benchmark, our method further mirrored human evaluation compared to conventional static evaluations.


The Implicit Bias of Heterogeneity towards Invariance and Causality

arXiv.org Artificial Intelligence

It is observed empirically that the large language models (LLM), trained with a variant of regression loss using numerous corpus from the Internet, can unveil causal associations to some extent. This is contrary to the traditional wisdom that ``association is not causation'' and the paradigm of traditional causal inference in which prior causal knowledge should be carefully incorporated into the design of methods. It is a mystery why causality, in a higher layer of understanding, can emerge from the regression task that pursues associations. In this paper, we claim the emergence of causality from association-oriented training can be attributed to the coupling effects from the heterogeneity of the source data, stochasticity of training algorithms, and over-parameterization of the learning models. We illustrate such an intuition using a simple but insightful model that learns invariance, a quasi-causality, using regression loss. To be specific, we consider multi-environment low-rank matrix sensing problems where the unknown r-rank ground-truth d*d matrices diverge across the environments but contain a lower-rank invariant, causal part. In this case, running pooled gradient descent will result in biased solutions that only learn associations in general. We show that running large-batch Stochastic Gradient Descent, whose each batch being linear measurement samples randomly selected from a certain environment, can successfully drive the solution towards the invariant, causal solution under certain conditions. This step is related to the relatively strong heterogeneity of the environments, the large step size and noises in the optimization algorithm, and the over-parameterization of the model. In summary, we unveil another implicit bias that is a result of the symbiosis between the heterogeneity of data and modern algorithms, which is, to the best of our knowledge, first in the literature.


RobWE: Robust Watermark Embedding for Personalized Federated Learning Model Ownership Protection

arXiv.org Artificial Intelligence

Embedding watermarks into models has been widely used to protect model ownership in federated learning (FL). However, existing methods are inadequate for protecting the ownership of personalized models acquired by clients in personalized FL (PFL). This is due to the aggregation of the global model in PFL, resulting in conflicts over clients' private watermarks. Moreover, malicious clients may tamper with embedded watermarks to facilitate model leakage and evade accountability. This paper presents a robust watermark embedding scheme, named RobWE, to protect the ownership of personalized models in PFL. We first decouple the watermark embedding of personalized models into two parts: head layer embedding and representation layer embedding. The head layer belongs to clients' private part without participating in model aggregation, while the representation layer is the shared part for aggregation. For representation layer embedding, we employ a watermark slice embedding operation, which avoids watermark embedding conflicts. Furthermore, we design a malicious watermark detection scheme enabling the server to verify the correctness of watermarks before aggregating local models. We conduct an exhaustive experimental evaluation of RobWE. The results demonstrate that RobWE significantly outperforms the state-of-the-art watermark embedding schemes in FL in terms of fidelity, reliability, and robustness.


Modeling Point Uncertainty in Radar SLAM

arXiv.org Artificial Intelligence

--While visual and laser-based simultaneous localization and mapping (SLAM) techniques have gained significant attention, radar SLAM remains a robust option for challenging conditions. This paper aims to improve the performance of radar SLAM by modeling point uncertainty. The basic SLAM system is a radar-inertial odometry (RIO) system that leverages velocity-aided radar points and high-frequency inertial measurements. We first propose to model the uncertainty of radar points in polar coordinates by considering the nature of radar sensing. Then in the SLAM system, the uncertainty model is designed into the data association module and is incorporated to weight the motion estimation. Real-world experiments on public and self-collected datasets validate the effectiveness of the proposed models and approaches. The findings highlight the potential of incorporating radar point uncertainty modeling to improve the radar SLAM system in adverse environments. NOWING own pose is a fundamental problem for robotics as well as the navigation system. Recent state estimation techniques, such as simultaneous localization and mapping (SLAM), are widely used for pose estimation for navigation systems. Advancements in sensing technology have promoted the development and real-world deployment of visual and laser-based SLAM [1], [2], either independently or through sensor fusion approaches. These sensing modalities might fail well in adverse conditions, such as indoor fire scenes or outdoor snowy environments, thus blocking the application of robotics in these demanding situations.


Multi: Multimodal Understanding Leaderboard with Text and Images

arXiv.org Artificial Intelligence

Rapid progress in multimodal large language models (MLLMs) highlights the need to introduce challenging yet realistic benchmarks to the academic community. Existing benchmarks primarily focus on simple natural image understanding, but Multi emerges as a cutting-edge benchmark for MLLMs, offering a comprehensive dataset for evaluating MLLMs against understanding complex figures and tables, and scientific questions. This benchmark, reflecting current realistic examination styles, provides multimodal inputs and requires responses that are either precise or open-ended, similar to real-life school tests. It challenges MLLMs with a variety of tasks, ranging from formula derivation to image detail analysis, and cross-modality reasoning. Multi includes over 18,000 questions, with a focus on science-based QA in diverse formats. We also introduce Multi-Elite, a 500-question subset for testing the extremities of MLLMs, and Multi-Extend, which enhances In-Context Learning research with more than 4,500 knowledge pieces. Our evaluation indicates significant potential for MLLM advancement, with GPT-4V achieving a 63.7% accuracy rate on Multi, in contrast to other MLLMs scoring between 31.3% and 53.7%. Multi serves not only as a robust evaluation platform but also paves the way for the development of expert-level AI.


Rethinking the Instruction Quality: LIFT is What You Need

arXiv.org Artificial Intelligence

Instruction tuning, a specialized technique to enhance large language model (LLM) performance via instruction datasets, relies heavily on the quality of employed data. Existing quality improvement methods alter instruction data through dataset expansion or curation. However, the expansion method risks data redundancy, potentially compromising LLM performance, while the curation approach confines the LLM's potential to the original dataset. Our aim is to surpass the original data quality without encountering these shortcomings. To achieve this, we propose LIFT (LLM Instruction Fusion Transfer), a novel and versatile paradigm designed to elevate the instruction quality to new heights. LIFT strategically broadens data distribution to encompass more high-quality subspaces and eliminates redundancy, concentrating on high-quality segments across overall data subspaces. Experimental results demonstrate that, even with a limited quantity of high-quality instruction data selected by our paradigm, LLMs not only consistently uphold robust performance across various tasks but also surpass some state-of-the-art results, highlighting the significant improvement in instruction quality achieved by our paradigm.


Cautiously-Optimistic Knowledge Sharing for Cooperative Multi-Agent Reinforcement Learning

arXiv.org Artificial Intelligence

While decentralized training is attractive in multi-agent reinforcement learning (MARL) for its excellent scalability and robustness, its inherent coordination challenges in collaborative tasks result in numerous interactions for agents to learn good policies. To alleviate this problem, action advising methods make experienced agents share their knowledge about what to do, while less experienced agents strictly follow the received advice. However, this method of sharing and utilizing knowledge may hinder the team's exploration of better states, as agents can be unduly influenced by suboptimal or even adverse advice, especially in the early stages of learning. Inspired by the fact that humans can learn not only from the success but also from the failure of others, this paper proposes a novel knowledge sharing framework called Cautiously-Optimistic kNowledge Sharing (CONS). CONS enables each agent to share both positive and negative knowledge and cautiously assimilate knowledge from others, thereby enhancing the efficiency of early-stage exploration and the agents' robustness to adverse advice. Moreover, considering the continuous improvement of policies, agents value negative knowledge more in the early stages of learning and shift their focus to positive knowledge in the later stages. Our framework can be easily integrated into existing Q-learning based methods without introducing additional training costs. We evaluate CONS in several challenging multi-agent tasks and find it excels in environments where optimal behavioral patterns are difficult to discover, surpassing the baselines in terms of convergence rate and final performance.