Goto

Collaborating Authors

 Xu, Xiaowei


SCNN: A General Distribution based Statistical Convolutional Neural Network with Application to Video Object Detection

arXiv.org Machine Learning

Various convolutional neural networks (CNNs) were developed recently that achieved accuracy comparable with that of human beings in computer vision tasks such as image recognition, object detection and tracking, etc. Most of these networks, however, process one single frame of image at a time, and may not fully utilize the temporal and contextual correlation typically present in multiple channels of the same image or adjacent frames from a video, thus limiting the achievable throughput. This limitation stems from the fact that existing CNNs operate on deterministic numbers. In this paper, we propose a novel statistical convolutional neural network (SCNN), which extends existing CNN architectures but operates directly on correlated distributions rather than deterministic numbers. By introducing a parameterized canonical model to model correlated data and defining corresponding operations as required for CNN training and inference, we show that SCNN can process multiple frames of correlated images effectively, hence achieving significant speedup over existing CNN models. We use a CNN based video object detection as an example to illustrate the usefulness of the proposed SCNN as a general network model. Experimental results show that even a non-optimized implementation of SCNN can still achieve 178% speedup over existing CNNs with slight accuracy degradation.


On the Quantization of Cellular Neural Networks for Cyber-Physical Systems

arXiv.org Machine Learning

Cyber-Physical Systems (CPSs) have been pervasive including smart grid, autonomous automobile systems, medical monitoring, process control systems, robotics systems, and automatic pilot avionics. As usually implemented on embedded devices, CPS is typically constrained by computation capacity and energy consumption. In some CPS applications such as telemedicine and advanced driving assistance system (ADAS), data processing on the embedded devices is preferred due to security/safety and real-time requirement. Therefore, high efficiency is highly desirable for such CPS applications. In this paper we present CeNN quantization for high-efficient processing for CPS applications, particularly telemedicine and ADAS applications. We systematically put forward powers-of-two based incremental quantization of CeNNs for efficient hardware implementation. The incremental quantization contains iterative procedures including parameter partition, parameter quantization, and re-training. We propose five different strategies including random strategy, pruning inspired strategy, weighted pruning inspired strategy, nearest neighbor strategy, and weighted nearest neighbor strategy. Experimental results show that our approach can achieve a speedup up to 7.8x with no performance loss compared with the state-of-the-art FPGA solutions for CeNNs.


Active Lifelong Learning With "Watchdog"

AAAI Conferences

Lifelong learning intends to learn new consecutive tasks depending on previously accumulated experiences, i.e., knowledge library. However, the knowledge among different new coming tasks are imbalance. Therefore, in this paper, we try to mimic an effective "human cognition" strategy by actively sorting the importance of new tasks in the process of unknown-to-known and selecting to learn the important tasks with more information preferentially. To achieve this, we consider to assess the importance of the new coming task, i.e., unknown or not, as an outlier detection issue, and design a hierarchical dictionary learning model consisting of two-level task descriptors to sparse reconstruct each task with the l0 norm constraint. The new coming tasks are sorted depending on the sparse reconstruction score in descending order, and the task with high reconstruction score will be permitted to pass, where this mechanism is called as "watchdog." Next, the knowledge library of the lifelong learning framework encode the selected task by transferring previous knowledge, and then can also update itself with knowledge from both previously learned task and current task automatically. For model optimization, the alternating direction method is employed to solve our model and converges to a fixed point. Extensive experiments on both benchmark datasets and our own dataset demonstrate the effectiveness of our proposed model especially in task selection and dictionary learning.