Xu, Xiaodong
Codebook-enabled Generative End-to-end Semantic Communication Powered by Transformer
Ye, Peigen, Sun, Yaping, Yao, Shumin, Chen, Hao, Xu, Xiaodong, Cui, Shuguang
Codebook-based generative semantic communication attracts increasing attention, since only indices are required to be transmitted when the codebook is shared between transmitter and receiver. However, due to the fact that the semantic relations among code vectors are not necessarily related to the distance of the corresponding code indices, the performance of the codebook-enabled semantic communication system is susceptible to the channel noise. Thus, how to improve the system robustness against the noise requires careful design. This paper proposes a robust codebook-assisted image semantic communication system, where semantic codec and codebook are first jointly constructed, and then vector-to-index transformer is designed guided by the codebook to eliminate the effects of channel noise, and achieve image generation. Thanks to the assistance of the high-quality codebook to the Transformer, the generated images at the receiver outperform those of the compared methods in terms of visual perception. In the end, numerical results and generated images demonstrate the advantages of the generative semantic communication method over JPEG+LDPC and traditional joint source channel coding (JSCC) methods.
Deep Joint Source-Channel Coding for Efficient and Reliable Cross-Technology Communication
Yao, Shumin, Xu, Xiaodong, Chen, Hao, Sun, Yaping, Zhao, Qinglin
Cross-technology communication (CTC) is a promising technique that enables direct communications among incompatible wireless technologies without needing hardware modification. However, it has not been widely adopted in real-world applications due to its inefficiency and unreliability. To address this issue, this paper proposes a deep joint source-channel coding (DJSCC) scheme to enable efficient and reliable CTC. The proposed scheme builds a neural-network-based encoder and decoder at the sender side and the receiver side, respectively, to achieve two critical tasks simultaneously: 1) compressing the messages to the point where only their essential semantic meanings are preserved; 2) ensuring the robustness of the semantic meanings when they are transmitted across incompatible technologies. The scheme incorporates existing CTC coding algorithms as domain knowledge to guide the encoder-decoder pair to learn the characteristics of CTC links better. Moreover, the scheme constructs shared semantic knowledge for the encoder and decoder, allowing semantic meanings to be converted into very few bits for cross-technology transmissions, thus further improving the efficiency of CTC. Extensive simulations verify that the proposed scheme can reduce the transmission overhead by up to 97.63\% and increase the structural similarity index measure by up to 734.78%, compared with the state-of-the-art CTC scheme.
Learning for Semantic Knowledge Base-Guided Online Feature Transmission in Dynamic Channels
Gao, Xiangyu, Sun, Yaping, Wei, Dongyu, Xu, Xiaodong, Chen, Hao, Yin, Hao, Cui, Shuguang
With the proliferation of edge computing, efficient AI inference on edge devices has become essential for intelligent applications such as autonomous vehicles and VR/AR. In this context, we address the problem of efficient remote object recognition by optimizing feature transmission between mobile devices and edge servers. We propose an online optimization framework to address the challenge of dynamic channel conditions and device mobility in an end-to-end communication system. Our approach builds upon existing methods by leveraging a semantic knowledge base to drive multi-level feature transmission, accounting for temporal factors and dynamic elements throughout the transmission process. To solve the online optimization problem, we design a novel soft actor-critic-based deep reinforcement learning system with a carefully designed reward function for real-time decision-making, overcoming the optimization difficulty of the NP-hard problem and achieving the minimization of semantic loss while respecting latency constraints. Numerical results showcase the superiority of our approach compared to traditional greedy methods under various system setups.
Non-Orthogonal Multiple Access Enhanced Multi-User Semantic Communication
Li, Weizhi, Liang, Haotai, Dong, Chen, Xu, Xiaodong, Zhang, Ping, Liu, Kaijun
Semantic communication serves as a novel paradigm and attracts the broad interest of researchers. One critical aspect of it is the multi-user semantic communication theory, which can further promote its application to the practical network environment. While most existing works focused on the design of end-to-end single-user semantic transmission, a novel non-orthogonal multiple access (NOMA)-based multi-user semantic communication system named NOMASC is proposed in this paper. The proposed system can support semantic tranmission of multiple users with diverse modalities of source information. To avoid high demand for hardware, an asymmetric quantizer is employed at the end of the semantic encoder for discretizing the continuous full-resolution semantic feature. In addition, a neural network model is proposed for mapping the discrete feature into self-learned symbols and accomplishing intelligent multi-user detection (MUD) at the receiver. Simulation results demonstrate that the proposed system holds good performance in non-orthogonal transmission of multiple user signals and outperforms the other methods, especially at low-to-medium SNRs. Moreover, it has high robustness under various simulation settings and mismatched test scenarios.
A Specific Task-oriented Semantic Image Communication System for substation patrol inspection
Fan, Senran, Liang, Haotai, Dong, Chen, Xu, Xiaodong, Liu, Geng
Intelligent inspection robots are widely used in substation patrol inspection, which can help check potential safety hazards by patrolling the substation and sending back scene images. However, when patrolling some marginal areas with weak signal, the scene images cannot be sucessfully transmissted to be used for hidden danger elimination, which greatly reduces the quality of robots'daily work. To solve such problem, a Specific Task-oriented Semantic Communication System for Imag-STSCI is designed, which involves the semantic features extraction, transmission, restoration and enhancement to get clearer images sent by intelligent robots under weak signals. Inspired by that only some specific details of the image are needed in such substation patrol inspection task, we proposed a new paradigm of semantic enhancement in such specific task to ensure the clarity of key semantic information when facing a lower bit rate or a low signal-to-noise ratio situation. Across the reality-based simulation, experiments show our STSCI can generally surpass traditional image-compression-based and channel-codingbased or other semantic communication system in the substation patrol inspection task with a lower bit rate even under a low signal-to-noise ratio situation.