Xu, Tengyu
Sample Complexity Bounds for Two Timescale Value-based Reinforcement Learning Algorithms
Xu, Tengyu, Liang, Yingbin
Two timescale stochastic approximation (SA) has been widely used in value-based reinforcement learning algorithms. In the policy evaluation setting, it can model the linear and nonlinear temporal difference learning with gradient correction (TDC) algorithms as linear SA and nonlinear SA, respectively. In the policy optimization setting, two timescale nonlinear SA can also model the greedy gradient-Q (Greedy-GQ) algorithm. In previous studies, the non-asymptotic analysis of linear TDC and Greedy-GQ has been studied in the Markovian setting, with diminishing or accuracy-dependent stepsize. For the nonlinear TDC algorithm, only the asymptotic convergence has been established. In this paper, we study the non-asymptotic convergence rate of two timescale linear and nonlinear TDC and Greedy-GQ under Markovian sampling and with accuracy-independent constant stepsize. For linear TDC, we provide a novel non-asymptotic analysis and show that it attains an $\epsilon$-accurate solution with the optimal sample complexity of $\mathcal{O}(\epsilon^{-1}\log(1/\epsilon))$ under a constant stepsize. For nonlinear TDC and Greedy-GQ, we show that both algorithms attain $\epsilon$-accurate stationary solution with sample complexity $\mathcal{O}(\epsilon^{-2})$. It is the first non-asymptotic convergence result established for nonlinear TDC under Markovian sampling and our result for Greedy-GQ outperforms the previous result orderwisely by a factor of $\mathcal{O}(\epsilon^{-1}\log(1/\epsilon))$.
When Will Generative Adversarial Imitation Learning Algorithms Attain Global Convergence
Guan, Ziwei, Xu, Tengyu, Liang, Yingbin
Generative adversarial imitation learning (GAIL) is a popular inverse reinforcement learning approach for jointly optimizing policy and reward from expert trajectories. A primary question about GAIL is whether applying a certain policy gradient algorithm to GAIL attains a global minimizer (i.e., yields the expert policy), for which existing understanding is very limited. Such global convergence has been shown only for the linear (or linear-type) MDP and linear (or linearizable) reward. In this paper, we study GAIL under general MDP and for nonlinear reward function classes (as long as the objective function is strongly concave with respect to the reward parameter). We characterize the global convergence with a sublinear rate for a broad range of commonly used policy gradient algorithms, all of which are implemented in an alternating manner with stochastic gradient ascent for reward update, including projected policy gradient (PPG)-GAIL, Frank-Wolfe policy gradient (FWPG)-GAIL, trust region policy optimization (TRPO)-GAIL and natural policy gradient (NPG)-GAIL. This is the first systematic theoretical study of GAIL for global convergence.
Improving Sample Complexity Bounds for (Natural) Actor-Critic Algorithms
Xu, Tengyu, Wang, Zhe, Liang, Yingbin
The actor-critic (AC) algorithm is a popular method to find an optimal policy in reinforcement learning. In the infinite horizon scenario, the finite-sample convergence rate for the AC and natural actor-critic (NAC) algorithms has been established recently, but under independent and identically distributed (i.i.d.) sampling and single-sample update at each iteration. In contrast, this paper characterizes the convergence rate and sample complexity of AC and NAC under Markovian sampling, with mini-batch data for each iteration, and with actor having general policy class approximation. We show that the overall sample complexity for a mini-batch AC to attain an $\epsilon$-accurate stationary point improves the best known sample complexity of AC by an order of $\mathcal{O}(\epsilon^{-1}\log(1/\epsilon))$, and the overall sample complexity for a mini-batch NAC to attain an $\epsilon$-accurate globally optimal point improves the existing sample complexity of NAC by an order of $\mathcal{O}(\epsilon^{-2}/\log(1/\epsilon))$. Moreover, the sample complexity of AC and NAC characterized in this work outperforms that of policy gradient (PG) and natural policy gradient (NPG) by a factor of $\mathcal{O}((1-\gamma)^{-3})$ and $\mathcal{O}((1-\gamma)^{-4}\epsilon^{-2}/\log(1/\epsilon))$, respectively. This is the first theoretical study establishing that AC and NAC attain orderwise performance improvement over PG and NPG under infinite horizon due to the incorporation of critic.
Enhanced First and Zeroth Order Variance Reduced Algorithms for Min-Max Optimization
Xu, Tengyu, Wang, Zhe, Liang, Yingbin, Poor, H. Vincent
Min-max optimization captures many important machine learning problems such as robust adversarial learning and inverse reinforcement learning, and nonconvex-strongly-concave min-max optimization has been an active line of research. Specifically, a novel variance reduction algorithm SREDA was proposed recently by (Luo et al. 2020) to solve such a problem, and was shown to achieve the optimal complexity dependence on the required accuracy level $\epsilon$. Despite the superior theoretical performance, the convergence guarantee of SREDA requires stringent initialization accuracy and an $\epsilon$-dependent stepsize for controlling the per-iteration progress, so that SREDA can run very slowly in practice. This paper develops a novel analytical framework that guarantees the SREDA's optimal complexity performance for a much enhanced algorithm SREDA-Boost, which has less restrictive initialization requirement and an accuracy-independent (and much bigger) stepsize. Hence, SREDA-Boost runs substantially faster in experiments than SREDA. We further apply SREDA-Boost to propose a zeroth-order variance reduction algorithm named ZO-SREDA-Boost for the scenario that has access only to the information about function values not gradients, and show that ZO-SREDA-Boost outperforms the best known complexity dependence on $\epsilon$. This is the first study that applies the variance reduction technique to zeroth-order algorithm for min-max optimization problems.
Non-asymptotic Convergence Analysis of Two Time-scale (Natural) Actor-Critic Algorithms
Xu, Tengyu, Wang, Zhe, Liang, Yingbin
As an important type of reinforcement learning algorithms, actor-critic (AC) and natural actor-critic (NAC) algorithms are often executed in two ways for finding optimal policies. In the first nested-loop design, actor's one update of policy is followed by an entire loop of critic's updates of the value function, and the finite-sample analysis of such AC and NAC algorithms have been recently well established. The second two time-scale design, in which actor and critic update simultaneously but with different learning rates, has much fewer tuning parameters than the nested-loop design and is hence substantially easier to implement. Although two time-scale AC and NAC have been shown to converge in the literature, the finite-sample convergence rate has not been established. In this paper, we provide the first such non-asymptotic convergence rate for two time-scale AC and NAC under Markovian sampling and with actor having general policy class approximation. We show that two time-scale AC requires the overall sample complexity at the order of $\mathcal{O}(\epsilon^{-2.5}\log^3(\epsilon^{-1}))$ to attain an $\epsilon$-accurate stationary point, and two time-scale NAC requires the overall sample complexity at the order of $\mathcal{O}(\epsilon^{-4}\log^2(\epsilon^{-1}))$ to attain an $\epsilon$-accurate global optimal point. We develop novel techniques for bounding the bias error of the actor due to dynamically changing Markovian sampling and for analyzing the convergence rate of the linear critic with dynamically changing base functions and transition kernel.
Two Time-scale Off-Policy TD Learning: Non-asymptotic Analysis over Markovian Samples
Xu, Tengyu, Zou, Shaofeng, Liang, Yingbin
Gradient-based temporal difference (GTD) algorithms are widely used in off-policy learning scenarios. Among them, the two time-scale TD with gradient correction (TDC) algorithm has been shown to have superior performance. In contrast to previous studies that characterized the non-asymptotic convergence rate of TDC only under identical and independently distributed (i.i.d.) data samples, we provide the first non-asymptotic convergence analysis for two time-scale TDC under a non-i.i.d.\ Markovian sample path and linear function approximation. We show that the two time-scale TDC can converge as fast as O(log t/(t^(2/3))) under diminishing stepsize, and can converge exponentially fast under constant stepsize, but at the cost of a non-vanishing error. We further propose a TDC algorithm with blockwisely diminishing stepsize, and show that it asymptotically converges with an arbitrarily small error at a blockwisely linear convergence rate. Our experiments demonstrate that such an algorithm converges as fast as TDC under constant stepsize, and still enjoys comparable accuracy as TDC under diminishing stepsize.
Finite-Sample Analysis for SARSA and Q-Learning with Linear Function Approximation
Zou, Shaofeng, Xu, Tengyu, Liang, Yingbin
Though the convergence of major reinforcement learning algorithms has been extensively studied, the finite-sample analysis to further characterize the convergence rate in terms of the sample complexity for problems with continuous state space is still very limited. Such a type of analysis is especially challenging for algorithms with dynamically changing learning policies and under non-i.i.d.\ sampled data. In this paper, we present the first finite-sample analysis for the SARSA algorithm and its minimax variant (for zero-sum Markov games), with a single sample path and linear function approximation. To establish our results, we develop a novel technique to bound the gradient bias for dynamically changing learning policies, which can be of independent interest. We further provide finite-sample bounds for Q-learning and its minimax variant. Comparison of our result with the existing finite-sample bound indicates that linear function approximation achieves order-level lower sample complexity than the nearest neighbor approach.
Convergence of SGD in Learning ReLU Models with Separable Data
Xu, Tengyu, Zhou, Yi, Ji, Kaiyi, Liang, Yingbin
We consider the binary classification problem in which the objective function is the exponential loss with a ReLU model, and study the convergence property of the stochastic gradient descent (SGD) algorithm on linearly separable data. We show that the gradient descent (GD) algorithm do not always learn desirable model parameters due to the nonlinear ReLU model. Then, we identify a certain condition of data samples, under which we show that SGD can learn a proper classifier with implicit bias. In specific, we establish the sub-linear convergence rate of the function value generated by SGD to global minimum. We further show that SGD actually converges in expectation to the maximum margin classifier with respect to the samples with +1 label under the ReLU model at the rate O(1/ln t). We also extend our study to the case of multi-ReLU neurons, and show that SGD converges to a certain non-linear maximum margin classifier for a class of non-linearly separable data.