Goto

Collaborating Authors

 Xu, Ming


GAME: Generalized deep learning model towards multimodal data integration for early screening of adolescent mental disorders

arXiv.org Artificial Intelligence

The timely identification of mental disorders in adolescents is a global public health challenge.Single factor is difficult to detect the abnormality due to its complex and subtle nature. Additionally, the generalized multimodal Computer-Aided Screening (CAS) systems with interactive robots for adolescent mental disorders are not available. Here, we design an android application with mini-games and chat recording deployed in a portable robot to screen 3,783 middle school students and construct the multimodal screening dataset, including facial images, physiological signs, voice recordings, and textual transcripts.We develop a model called GAME (Generalized Model with Attention and Multimodal EmbraceNet) with novel attention mechanism that integrates cross-modal features into the model. GAME evaluates adolescent mental conditions with high accuracy (73.34%-92.77%) and F1-Score (71.32%-91.06%).We find each modality contributes dynamically to the mental disorders screening and comorbidities among various mental disorders, indicating the feasibility of explainable model. This study provides a system capable of acquiring multimodal information and constructs a generalized multimodal integration algorithm with novel attention mechanisms for the early screening of adolescent mental disorders.


Towards Understanding Gradient Approximation in Equality Constrained Deep Declarative Networks

arXiv.org Artificial Intelligence

We explore conditions for when the gradient of a deep declarative node can be approximated by ignoring constraint terms and still result in a descent direction for the global loss function. This has important practical application when training deep learning models since the approximation is often computationally much more efficient than the true gradient calculation. We provide theoretical analysis for problems with linear equality constraints and normalization constraints, and show examples where the approximation works well in practice as well as some cautionary tales for when it fails.


Adaptive Frequency Green Light Optimal Speed Advisory based on Hybrid Actor-Critic Reinforcement Learning

arXiv.org Artificial Intelligence

Green Light Optimal Speed Advisory (GLOSA) system suggests speeds to vehicles to assist them in passing through intersections during green intervals, thus reducing traffic congestion and fuel consumption by minimizing the number of stops and idle times at intersections. However, previous research has focused on optimizing the GLOSA algorithm, neglecting the frequency of speed advisory by the GLOSA system. Specifically, some studies provide speed advisory profile at each decision step, resulting in redundant advisory, while others calculate the optimal speed for the vehicle only once, which cannot adapt to dynamic traffic. In this paper, we propose an Adaptive Frequency GLOSA (AF-GLOSA) model based on Hybrid Proximal Policy Optimization (H-PPO) method, which employs an actor-critic architecture with a hybrid actor network. The hybrid actor network consists of a discrete actor that outputs control gap and a continuous actor that outputs acceleration profiles. Additionally, we design a novel reward function that considers both travel efficiency and fuel consumption. The AF-GLOSA model is evaluated in comparison to traditional GLOSA and learning-based GLOSA methods in a three-lane intersection with a traffic signal in SUMO. The results demonstrate that the AF-GLOSA model performs best in reducing average stop times, fuel consumption and CO2 emissions.


Deep Declarative Dynamic Time Warping for End-to-End Learning of Alignment Paths

arXiv.org Artificial Intelligence

This paper addresses learning end-to-end models for time series data that include a temporal alignment step via dynamic time warping (DTW). Existing approaches to differentiable DTW either differentiate through a fixed warping path or apply a differentiable relaxation to the min operator found in the recursive steps used to solve the DTW problem. We instead propose a DTW layer based around bi-level optimisation and deep declarative networks, which we name DecDTW. By formulating DTW as a continuous, inequality constrained optimisation problem, we can compute gradients for the solution of the optimal alignment (with respect to the underlying time series) using implicit differentiation. An interesting byproduct of this formulation is that DecDTW outputs the optimal warping path between two time series as opposed to a soft approximation, recoverable from Soft-DTW. We show that this property is particularly useful for applications where downstream loss functions are defined on the optimal alignment path itself. This naturally occurs, for instance, when learning to improve the accuracy of predicted alignments against ground truth alignments. We evaluate DecDTW on two such applications, namely the audio-to-score alignment task in music information retrieval and the visual place recognition task in robotics, demonstrating state-of-the-art results in both.


Cognitive Semantic Communication Systems Driven by Knowledge Graph: Principle, Implementation, and Performance Evaluation

arXiv.org Artificial Intelligence

Semantic communication is envisioned as a promising technique to break through the Shannon limit. However, semantic inference and semantic error correction have not been well studied. Moreover, error correction methods of existing semantic communication frameworks are inexplicable and inflexible, which limits the achievable performance. In this paper, to tackle this issue, a knowledge graph is exploited to develop semantic communication systems. Two cognitive semantic communication frameworks are proposed for the single-user and multiple-user communication scenarios. Moreover, a simple, general, and interpretable semantic alignment algorithm for semantic information detection is proposed. Furthermore, an effective semantic correction algorithm is proposed by mining the inference rule from the knowledge graph. Additionally, the pre-trained model is fine-tuned to recover semantic information. For the multi-user cognitive semantic communication system, a message recovery algorithm is proposed to distinguish messages of different users by matching the knowledge level between the source and the destination. Extensive simulation results conducted on a public dataset demonstrate that our proposed single-user and multi-user cognitive semantic communication systems are superior to benchmark communication systems in terms of the data compression rate and communication reliability. Finally, we present realistic single-user and multi-user cognitive semantic communication systems results by building a software-defined radio prototype system.


Futuristic Variations and Analysis in Fundus Images Corresponding to Biological Traits

arXiv.org Artificial Intelligence

Fundus image captures rear of an eye, and which has been studied for the diseases identification, classification, segmentation, generation, and biological traits association using handcrafted, conventional, and deep learning methods. In biological traits estimation, most of the studies have been carried out for the age prediction and gender classification with convincing results. However, the current study utilizes the cutting-edge deep learning (DL) algorithms to estimate biological traits in terms of age and gender together with associating traits to retinal visuals. For the traits association, our study embeds aging as the label information into the proposed DL model to learn knowledge about the effected regions with aging. Our proposed DL models, named FAG-Net and FGC-Net, correspondingly estimate biological traits (age and gender) and generates fundus images. FAG-Net can generate multiple variants of an input fundus image given a list of ages as conditions. Our study analyzes fundus images and their corresponding association with biological traits, and predicts of possible spreading of ocular disease on fundus images given age as condition to the generative model. Our proposed models outperform the randomly selected state of-the-art DL models.


Two Wrongs Don't Make a Right: Combating Confirmation Bias in Learning with Label Noise

arXiv.org Artificial Intelligence

Noisy labels damage the performance of deep networks. For robust learning, a prominent two-stage pipeline alternates between eliminating possible incorrect labels and semi-supervised training. However, discarding part of noisy labels could result in a loss of information, especially when the corruption has a dependency on data, e.g., class-dependent or instance-dependent. Moreover, from the training dynamics of a representative two-stage method DivideMix, we identify the domination of confirmation bias: pseudo-labels fail to correct a considerable amount of noisy labels, and consequently, the errors accumulate. To sufficiently exploit information from noisy labels and mitigate wrong corrections, we propose Robust Label Refurbishment (Robust LR) a new hybrid method that integrates pseudo-labeling and confidence estimation techniques to refurbish noisy labels. We show that our method successfully alleviates the damage of both label noise and confirmation bias. As a result, it achieves state-of-the-art performance across datasets and noise types, namely CIFAR under different levels of synthetic noise and Mini-WebVision and ANIMAL-10N with real-world noise.


Residual Skill Policies: Learning an Adaptable Skill-based Action Space for Reinforcement Learning for Robotics

arXiv.org Artificial Intelligence

Skill-based reinforcement learning (RL) has emerged as a promising strategy to leverage prior knowledge for accelerated robot learning. Skills are typically extracted from expert demonstrations and are embedded into a latent space from which they can be sampled as actions by a high-level RL agent. However, this skill space is expansive, and not all skills are relevant for a given robot state, making exploration difficult. Furthermore, the downstream RL agent is limited to learning structurally similar tasks to those used to construct the skill space. We firstly propose accelerating exploration in the skill space using state-conditioned generative models to directly bias the high-level agent towards only sampling skills relevant to a given state based on prior experience. Next, we propose a low-level residual policy for fine-grained skill adaptation enabling downstream RL agents to adapt to unseen task variations. Finally, we validate our approach across four challenging manipulation tasks that differ from those used to build the skill space, demonstrating our ability to learn across task variations while significantly accelerating exploration, outperforming prior works. Code and videos are available on our project website: https://krishanrana.github.io/reskill.


Neuro-Symbolic Learning: Principles and Applications in Ophthalmology

arXiv.org Artificial Intelligence

Neural networks have been rapidly expanding in recent years, with novel strategies and applications. However, challenges such as interpretability, explainability, robustness, safety, trust, and sensibility remain unsolved in neural network technologies, despite the fact that they will unavoidably be addressed for critical applications. Attempts have been made to overcome the challenges in neural network computing by representing and embedding domain knowledge in terms of symbolic representations. Thus, the neuro-symbolic learning (NeSyL) notion emerged, which incorporates aspects of symbolic representation and bringing common sense into neural networks (NeSyL). In domains where interpretability, reasoning, and explainability are crucial, such as video and image captioning, question-answering and reasoning, health informatics, and genomics, NeSyL has shown promising outcomes. This review presents a comprehensive survey on the state-of-the-art NeSyL approaches, their principles, advances in machine and deep learning algorithms, applications such as opthalmology, and most importantly, future perspectives of this emerging field.


Interactive Model with Structural Loss for Language-based Abductive Reasoning

arXiv.org Artificial Intelligence

The abductive natural language inference task ($\alpha$NLI) is proposed to infer the most plausible explanation between the cause and the event. In the $\alpha$NLI task, two observations are given, and the most plausible hypothesis is asked to pick out from the candidates. Existing methods model the relation between each candidate hypothesis separately and penalize the inference network uniformly. In this paper, we argue that it is unnecessary to distinguish the reasoning abilities among correct hypotheses; and similarly, all wrong hypotheses contribute the same when explaining the reasons of the observations. Therefore, we propose to group instead of ranking the hypotheses and design a structural loss called ``joint softmax focal loss'' in this paper. Based on the observation that the hypotheses are generally semantically related, we have designed a novel interactive language model aiming at exploiting the rich interaction among competing hypotheses. We name this new model for $\alpha$NLI: Interactive Model with Structural Loss (IMSL). The experimental results show that our IMSL has achieved the highest performance on the RoBERTa-large pretrained model, with ACC and AUC results increased by about 1\% and 5\% respectively.