Goto

Collaborating Authors

 Xu, Min


Noise Thresholds for Spectral Clustering

Neural Information Processing Systems

Although spectral clustering has enjoyed considerable empirical success in machine learning, its theoretical properties are not yet fully developed. We analyze the performance of a spectral algorithm for hierarchical clustering and show that on a class of hierarchically structured similarity matrices, this algorithm can tolerate noise that grows with the number of data points while still perfectly recovering the hierarchical clusters with high probability. We additionally improve upon previous results for k-way spectral clustering to derive conditions under which spectral clustering makes no mistakes. Further, using minimax analysis, we derive tight upper and lower bounds for the clustering problem and compare the performance of spectral clustering to these information theoretic limits. We also present experiments on simulated and real world data illustrating our results.


High-dimensional covariance estimation based on Gaussian graphical models

arXiv.org Machine Learning

Undirected graphs are often used to describe high dimensional distributions. Under sparsity conditions, the graph can be estimated using $\ell_1$-penalization methods. We propose and study the following method. We combine a multiple regression approach with ideas of thresholding and refitting: first we infer a sparse undirected graphical model structure via thresholding of each among many $\ell_1$-norm penalized regression functions; we then estimate the covariance matrix and its inverse using the maximum likelihood estimator. We show that under suitable conditions, this approach yields consistent estimation in terms of graphical structure and fast convergence rates with respect to the operator and Frobenius norm for the covariance matrix and its inverse. We also derive an explicit bound for the Kullback Leibler divergence.


Forest Density Estimation

arXiv.org Machine Learning

We study graph estimation and density estimation in high dimensions, using a family of density estimators based on forest structured undirected graphical models. For density estimation, we do not assume the true distribution corresponds to a forest; rather, we form kernel density estimates of the bivariate and univariate marginals, and apply Kruskal's algorithm to estimate the optimal forest on held out data. We prove an oracle inequality on the excess risk of the resulting estimator relative to the risk of the best forest. For graph estimation, we consider the problem of estimating forests with restricted tree sizes. We prove that finding a maximum weight spanning forest with restricted tree size is NP-hard, and develop an approximation algorithm for this problem. Viewing the tree size as a complexity parameter, we then select a forest using data splitting, and prove bounds on excess risk and structure selection consistency of the procedure. Experiments with simulated data and microarray data indicate that the methods are a practical alternative to Gaussian graphical models.