Xu, Min
AAANE: Attention-based Adversarial Autoencoder for Multi-scale Network Embedding
Sang, Lei, Xu, Min, Qian, Shengsheng, Wu, Xindong
Network embedding represents nodes in a continuous vector space and preserves structure information from the Network. Existing methods usually adopt a "one-size-fits-all" approach when concerning multi-scale structure information, such as first- and second-order proximity of nodes, ignoring the fact that different scales play different roles in the embedding learning. In this paper, we propose an Attention-based Adversarial Autoencoder Network Embedding(AAANE) framework, which promotes the collaboration of different scales and lets them vote for robust representations. The proposed AAANE consists of two components: 1) Attention-based autoencoder effectively capture the highly non-linear network structure, which can de-emphasize irrelevant scales during training. 2) An adversarial regularization guides the autoencoder learn robust representations by matching the posterior distribution of the latent embeddings to given prior distribution. This is the first attempt to introduce attention mechanisms to multi-scale network embedding. Experimental results on real-world networks show that our learned attention parameters are different for every network and the proposed approach outperforms existing state-of-the-art approaches for network embedding.
Deep learning based supervised semantic segmentation of Electron Cryo-Subtomograms
Liu, Chang, Zeng, Xiangrui, Lin, Ruogu, Liang, Xiaodan, Freyberg, Zachary, Xing, Eric, Xu, Min
Cellular Electron Cryo-Tomography (CECT) is a powerful imaging technique for the 3D visualization of cellular structure and organization at submolecular resolution. It enables analyzing the native structures of macromolecular complexes and their spatial organization inside single cells. However, due to the high degree of structural complexity and practical imaging limitations, systematic macromolecular structural recovery inside CECT images remains challenging. Particularly, the recovery of a macromolecule is likely to be biased by its neighbor structures due to the high molecular crowding. To reduce the bias, here we introduce a novel 3D convolutional neural network inspired by Fully Convolutional Network and Encoder-Decoder Architecture for the supervised segmentation of macromolecules of interest in subtomograms. The tests of our models on realistically simulated CECT data demonstrate that our new approach has significantly improved segmentation performance compared to our baseline approach. Also, we demonstrate that the proposed model has generalization ability to segment new structures that do not exist in training data.
Multi-Rate Gated Recurrent Convolutional Networks for Video-Based Pedestrian Re-Identification
Li, Zhihui (Beijing Etrol Technologies Co., Ltd.) | Yao, Lina (University of New South Wales) | Nie, Feiping (Northwestern Polytechnical University) | Zhang, Dingwen (Northwestern Polytechnical University) | Xu, Min (University of Technology Sydney)
Matching pedestrians across multiple camera views has attracted lots of recent research attention due to its apparent importance in surveillance and security applications.While most existing works address this problem in a still-image setting, we consider the more informative and challenging video-based person re-identification problem, where a video of a pedestrian as seen in one camera needs to be matched to a gallery of videos captured by other non-overlapping cameras. We employ a convolutional network to extract the appearance and motion features from raw video sequences, and then feed them into a multi-rate recurrent network to exploit the temporal correlations, and more importantly, to take into account the fact that pedestrians, sometimes even the same pedestrian, move in different speeds across different camera views. The combined network is trained in an end-to-end fashion, and we further propose an initialization strategy via context reconstruction to largely improve the performance. We conduct extensive experiments on the iLIDS-VID and PRID-2011 datasets, and our experimental results confirm the effectiveness and the generalization ability of our model.
Model compression for faster structural separation of macromolecules captured by Cellular Electron Cryo-Tomography
Guo, Jialiang, Zhou, Bo, Zeng, Xiangrui, Freyberg, Zachary, Xu, Min
Electron Cryo-Tomography (ECT) enables 3D visualization of macromolecule structure inside single cells. Macromolecule classification approaches based on convolutional neural networks (CNN) were developed to separate millions of macromolecules captured from ECT systematically. However, given the fast accumulation of ECT data, it will soon become necessary to use CNN models to efficiently and accurately separate substantially more macromolecules at the prediction stage, which requires additional computational costs. To speed up the prediction, we compress classification models into compact neural networks with little in accuracy for deployment. Specifically, we propose to perform model compression through knowledge distillation. Firstly, a complex teacher network is trained to generate soft labels with better classification feasibility followed by training of customized student networks with simple architectures using the soft label to compress model complexity. Our tests demonstrate that our compressed models significantly reduce the number of parameters and time cost while maintaining similar classification accuracy.
Feature Decomposition Based Saliency Detection in Electron Cryo-Tomograms
Zhou, Bo, Guo, Qiang, Zeng, Xiangrui, Xu, Min
Electron Cryo-Tomography (ECT) allows 3D visualization of subcellular structures at the submolecular resolution in close to the native state. However, due to the high degree of structural complexity and imaging limits, the automatic segmentation of cellular components from ECT images is very difficult. To complement and speed up existing segmentation methods, it is desirable to develop a generic cell component segmentation method that is 1) not specific to particular types of cellular components, 2) able to segment unknown cellular components, 3) fully unsupervised and does not rely on the availability of training data. As an important step towards this goal, in this paper, we propose a saliency detection method that computes the likelihood that a subregion in a tomogram stands out from the background. Our method consists of four steps: supervoxel over-segmentation, feature extraction, feature matrix decomposition, and computation of saliency. The method produces a distribution map that represents the regions' saliency in tomograms. Our experiments show that our method can successfully label most salient regions detected by a human observer, and able to filter out regions not containing cellular components. Therefore, our method can remove the majority of the background region, and significantly speed up the subsequent processing of segmentation and recognition of cellular components captured by ECT.
Integrative analysis of gene expression and phenotype data
Xu, Min
The linking genotype to phenotype is the fundamental aim of modern genetics. We focus on study of links between gene expression data and phenotype data through integrative analysis. We propose three approaches. 1) The inherent complexity of phenotypes makes high-throughput phenotype profiling a very difficult and laborious process. We propose a method of automated multi-dimensional profiling which uses gene expression similarity. Large-scale analysis show that our method can provide robust profiling that reveals different phenotypic aspects of samples. This profiling technique is also capable of interpolation and extrapolation beyond the phenotype information given in training data. It can be used in many applications, including facilitating experimental design and detecting confounding factors. 2) Phenotype association analysis problems are complicated by small sample size and high dimensionality. Consequently, phenotype-associated gene subsets obtained from training data are very sensitive to selection of training samples, and the constructed sample phenotype classifiers tend to have poor generalization properties. To eliminate these obstacles, we propose a novel approach that generates sequences of increasingly discriminative gene cluster combinations. Our experiments on both simulated and real datasets show robust and accurate classification performance. 3) Many complex phenotypes, such as cancer, are the product of not only gene expression, but also gene interaction. We propose an integrative approach to find gene network modules that activate under different phenotype conditions. Using our method, we discovered cancer subtype-specific network modules, as well as the ways in which these modules coordinate. In particular, we detected a breast-cancer specific tumor suppressor network module with a hub gene, PDGFRL, which may play an important role in this module.
Faithful Variable Screening for High-Dimensional Convex Regression
Xu, Min, Chen, Minhua, Lafferty, John
We study the problem of variable selection in convex nonparametric regression. Under the assumption that the true regression function is convex and sparse, we develop a screening procedure to select a subset of variables that contains the relevant variables. Our approach is a two-stage quadratic programming method that estimates a sum of one-dimensional convex functions, followed by one-dimensional concave regression fits on the residuals. In contrast to previous methods for sparse additive models, the optimization is finite dimensional and requires no tuning parameters for smoothness. Under appropriate assumptions, we prove that the procedure is faithful in the population setting, yielding no false negatives. We give a finite sample statistical analysis, and introduce algorithms for efficiently carrying out the required quadratic programs. The approach leads to computational and statistical advantages over fitting a full model, and provides an effective, practical approach to variable screening in convex regression.
Estimation Bias in Multi-Armed Bandit Algorithms for Search Advertising
Xu, Min, Qin, Tao, Liu, Tie-Yan
In search advertising, the search engine needs to select the most profitable advertisements to display, which can be formulated as an instance of online learning with partial feedback, also known as the stochastic multi-armed bandit (MAB) problem. In this paper, we show that the naive application of MAB algorithms to search advertising for advertisement selection will produce sample selection bias that harms the search engine by decreasing expected revenue and โestimation of the largest meanโ (ELM) bias that harms the advertisers by increasing game-theoretic player-regret. We then propose simple bias-correction methods with benefits to both the search engine and the advertisers.
Conditional Sparse Coding and Grouped Multivariate Regression
Xu, Min, Lafferty, John
We study the problem of multivariate regression where the data are naturally grouped, and a regression matrix is to be estimated for each group. We propose an approach in which a dictionary of low rank parameter matrices is estimated across groups, and a sparse linear combination of the dictionary elements is estimated to form a model within each group. We refer to the method as conditional sparse coding since it is a coding procedure for the response vectors Y conditioned on the covariate vectors X. This approach captures the shared information across the groups while adapting to the structure within each group. It exploits the same intuition behind sparse coding that has been successfully developed in computer vision and computational neuroscience. We propose an algorithm for conditional sparse coding, analyze its theoretical properties in terms of predictive accuracy, and present the results of simulation and brain imaging experiments that compare the new technique to reduced rank regression.
Efficient Active Algorithms for Hierarchical Clustering
Krishnamurthy, Akshay, Balakrishnan, Sivaraman, Xu, Min, Singh, Aarti
Advances in sensing technologies and the growth of the internet have resulted in an explosion in the size of modern datasets, while storage and processing power continue to lag behind. This motivates the need for algorithms that are efficient, both in terms of the number of measurements needed and running time. To combat the challenges associated with large datasets, we propose a general framework for active hierarchical clustering that repeatedly runs an off-the-shelf clustering algorithm on small subsets of the data and comes with guarantees on performance, measurement complexity and runtime complexity. We instantiate this framework with a simple spectral clustering algorithm and provide concrete results on its performance, showing that, under some assumptions, this algorithm recovers all clusters of size ?(log n) using O(n log^2 n) similarities and runs in O(n log^3 n) time for a dataset of n objects. Through extensive experimentation we also demonstrate that this framework is practically alluring.