Goto

Collaborating Authors

 Xu, Jun


Unifying Bias and Unfairness in Information Retrieval: A Survey of Challenges and Opportunities with Large Language Models

arXiv.org Artificial Intelligence

With the rapid advancement of large language models (LLMs), information retrieval (IR) systems, such as search engines and recommender systems, have undergone a significant paradigm shift. This evolution, while heralding new opportunities, introduces emerging challenges, particularly in terms of biases and unfairness, which may threaten the information ecosystem. In this paper, we present a comprehensive survey of existing works on emerging and pressing bias and unfairness issues in IR systems when the integration of LLMs. We first unify bias and unfairness issues as distribution mismatch problems, providing a groundwork for categorizing various mitigation strategies through distribution alignment. Subsequently, we systematically delve into the specific bias and unfairness issues arising from three critical stages of LLMs integration into IR systems: data collection, model development, and result evaluation. In doing so, we meticulously review and analyze recent literature, focusing on the definitions, characteristics, and corresponding mitigation strategies associated with these issues. Finally, we identify and highlight some open problems and challenges for future work, aiming to inspire researchers and stakeholders in the IR field and beyond to better understand and mitigate bias and unfairness issues of IR in this LLM era. We also consistently maintain a GitHub repository for the relevant papers and resources in this rising direction at https://github.com/KID-22/LLM-IR-Bias-Fairness-Survey.


Robot Safe Planning In Dynamic Environments Based On Model Predictive Control Using Control Barrier Function

arXiv.org Artificial Intelligence

Implementing obstacle avoidance in dynamic environments is a challenging problem for robots. Model predictive control (MPC) is a popular strategy for dealing with this type of problem, and recent work mainly uses control barrier function (CBF) as hard constraints to ensure that the system state remains in the safe set. However, in crowded scenarios, effective solutions may not be obtained due to infeasibility problems, resulting in degraded controller performance. We propose a new MPC framework that integrates CBF to tackle the issue of obstacle avoidance in dynamic environments, in which the infeasibility problem induced by hard constraints operating over the whole prediction horizon is solved by softening the constraints and introducing exact penalty, prompting the robot to actively seek out new paths. At the same time, generalized CBF is extended as a single-step safety constraint of the controller to enhance the safety of the robot during navigation. The efficacy of the proposed method is first shown through simulation experiments, in which a double-integrator system and a unicycle system are employed, and the proposed method outperforms other controllers in terms of safety, feasibility, and navigation efficiency. Furthermore, real-world experiment on an MR1000 robot is implemented to demonstrate the effectiveness of the proposed method.


Modeling Output-Level Task Relatedness in Multi-Task Learning with Feedback Mechanism

arXiv.org Artificial Intelligence

Multi-task learning (MTL) is a paradigm that simultaneously learns multiple tasks by sharing information at different levels, enhancing the performance of each individual task. While previous research has primarily focused on feature-level or parameter-level task relatedness, and proposed various model architectures and learning algorithms to improve learning performance, we aim to explore output-level task relatedness. This approach introduces a posteriori information into the model, considering that different tasks may produce correlated outputs with mutual influences. We achieve this by incorporating a feedback mechanism into MTL models, where the output of one task serves as a hidden feature for another task, thereby transforming a static MTL model into a dynamic one. To ensure the training process converges, we introduce a convergence loss that measures the trend of a task's outputs during each iteration. Additionally, we propose a Gumbel gating mechanism to determine the optimal projection of feedback signals. We validate the effectiveness of our method and evaluate its performance through experiments conducted on several baseline models in spoken language understanding.


IBCB: Efficient Inverse Batched Contextual Bandit for Behavioral Evolution History

arXiv.org Artificial Intelligence

Traditional imitation learning focuses on modeling the behavioral mechanisms of experts, which requires a large amount of interaction history generated by some fixed expert. However, in many streaming applications, such as streaming recommender systems, online decision-makers typically engage in online learning during the decision-making process, meaning that the interaction history generated by online decision-makers includes their behavioral evolution from novice expert to experienced expert. This poses a new challenge for existing imitation learning approaches that can only utilize data from experienced experts. To address this issue, this paper proposes an inverse batched contextual bandit (IBCB) framework that can efficiently perform estimations of environment reward parameters and learned policy based on the expert's behavioral evolution history. Specifically, IBCB formulates the inverse problem into a simple quadratic programming problem by utilizing the behavioral evolution history of the batched contextual bandit with inaccessible rewards. We demonstrate that IBCB is a unified framework for both deterministic and randomized bandit policies. The experimental results indicate that IBCB outperforms several existing imitation learning algorithms on synthetic and real-world data and significantly reduces running time. Additionally, empirical analyses reveal that IBCB exhibits better out-of-distribution generalization and is highly effective in learning the bandit policy from the interaction history of novice experts.


Multi-agent Reinforcement Traffic Signal Control based on Interpretable Influence Mechanism and Biased ReLU Approximation

arXiv.org Artificial Intelligence

Traffic signal control is important in intelligent transportation system, of which cooperative control is difficult to realize but yet vital. Many methods model multi-intersection traffic networks as grids and address the problem using multi-agent reinforcement learning (RL). Despite these existing studies, there is an opportunity to further enhance our understanding of the connectivity and globality of the traffic networks by capturing the spatiotemporal traffic information with efficient neural networks in deep RL. In this paper, we propose a novel multi-agent actor-critic framework based on an interpretable influence mechanism with a centralized learning and decentralized execution method. Specifically, we first construct an actor-critic framework, for which the piecewise linear neural network (PWLNN), named biased ReLU (BReLU), is used as the function approximator to obtain a more accurate and theoretically grounded approximation. Finally, our proposed framework is validated on two synthetic traffic networks to coordinate signal control between intersections, achieving lower traffic delays across the entire traffic network compared to state-of-the-art (SOTA) performance.


ChatUIE: Exploring Chat-based Unified Information Extraction using Large Language Models

arXiv.org Artificial Intelligence

Recent advancements in large language models have shown impressive performance in general chat. However, their domain-specific capabilities, particularly in information extraction, have certain limitations. Extracting structured information from natural language that deviates from known schemas or instructions has proven challenging for previous prompt-based methods. This motivated us to explore domain-specific modeling in chat-based language models as a solution for extracting structured information from natural language. In this paper, we present ChatUIE, an innovative unified information extraction framework built upon ChatGLM. Simultaneously, reinforcement learning is employed to improve and align various tasks that involve confusing and limited samples. Furthermore, we integrate generation constraints to address the issue of generating elements that are not present in the input. Our experimental results demonstrate that ChatUIE can significantly improve the performance of information extraction with a slight decrease in chatting ability.


On the Decision-Making Abilities in Role-Playing using Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) are now increasingly utilized for role-playing tasks, especially in impersonating domain-specific experts, primarily through role-playing prompts. When interacting in real-world scenarios, the decision-making abilities of a role significantly shape its behavioral patterns. In this paper, we concentrate on evaluating the decision-making abilities of LLMs post role-playing thereby validating the efficacy of role-playing. Our goal is to provide metrics and guidance for enhancing the decision-making abilities of LLMs in role-playing tasks. Specifically, we first use LLMs to generate virtual role descriptions corresponding to the 16 personality types of Myers-Briggs Type Indicator (abbreviated as MBTI) representing a segmentation of the population. Then we design specific quantitative operations to evaluate the decision-making abilities of LLMs post role-playing from four aspects: adaptability, exploration$\&$exploitation trade-off ability, reasoning ability, and safety. Finally, we analyze the association between the performance of decision-making and the corresponding MBTI types through GPT-4. Extensive experiments demonstrate stable differences in the four aspects of decision-making abilities across distinct roles, signifying a robust correlation between decision-making abilities and the roles emulated by LLMs. These results underscore that LLMs can effectively impersonate varied roles while embodying their genuine sociological characteristics.


Sparsity via Sparse Group $k$-max Regularization

arXiv.org Machine Learning

For the linear inverse problem with sparsity constraints, the $l_0$ regularized problem is NP-hard, and existing approaches either utilize greedy algorithms to find almost-optimal solutions or to approximate the $l_0$ regularization with its convex counterparts. In this paper, we propose a novel and concise regularization, namely the sparse group $k$-max regularization, which can not only simultaneously enhance the group-wise and in-group sparsity, but also casts no additional restraints on the magnitude of variables in each group, which is especially important for variables at different scales, so that it approximate the $l_0$ norm more closely. We also establish an iterative soft thresholding algorithm with local optimality conditions and complexity analysis provided. Through numerical experiments on both synthetic and real-world datasets, we verify the effectiveness and flexibility of the proposed method.


List-aware Reranking-Truncation Joint Model for Search and Retrieval-augmented Generation

arXiv.org Artificial Intelligence

The results of information retrieval (IR) are usually presented in the form of a ranked list of candidate documents, such as web search for humans and retrieval-augmented generation for large language models (LLMs). List-aware retrieval aims to capture the list-level contextual features to return a better list, mainly including reranking and truncation. Reranking finely re-scores the documents in the list. Truncation dynamically determines the cut-off point of the ranked list to achieve the trade-off between overall relevance and avoiding misinformation from irrelevant documents. Previous studies treat them as two separate tasks and model them separately. However, the separation is not optimal. First, it is hard to share the contextual information of the ranking list between the two tasks. Second, the separate pipeline usually meets the error accumulation problem, where the small error from the reranking stage can largely affect the truncation stage. To solve these problems, we propose a Reranking-Truncation joint model (GenRT) that can perform the two tasks concurrently. GenRT integrates reranking and truncation via generative paradigm based on encoder-decoder architecture. We also design the novel loss functions for joint optimization to make the model learn both tasks. Sharing parameters by the joint model is conducive to making full use of the common modeling information of the two tasks. Besides, the two tasks are performed concurrently and co-optimized to solve the error accumulation problem between separate stages. Experiments on public learning-to-rank benchmarks and open-domain Q\&A tasks show that our method achieves SOTA performance on both reranking and truncation tasks for web search and retrieval-augmented LLMs.


AI in ESG for Financial Institutions: An Industrial Survey

arXiv.org Artificial Intelligence

The burgeoning integration of Artificial Intelligence (AI) into Environmental, Social, and Governance (ESG) initiatives within the financial sector represents a paradigm shift towards more sus-tainable and equitable financial practices. This paper surveys the industrial landscape to delineate the necessity and impact of AI in bolstering ESG frameworks. With the advent of stringent regulatory requirements and heightened stakeholder awareness, financial institutions (FIs) are increasingly compelled to adopt ESG criteria. AI emerges as a pivotal tool in navigating the complex in-terplay of financial activities and sustainability goals. Our survey categorizes AI applications across three main pillars of ESG, illustrating how AI enhances analytical capabilities, risk assessment, customer engagement, reporting accuracy and more. Further, we delve into the critical con-siderations surrounding the use of data and the development of models, underscoring the importance of data quality, privacy, and model robustness. The paper also addresses the imperative of responsible and sustainable AI, emphasizing the ethical dimensions of AI deployment in ESG-related banking processes. Conclusively, our findings suggest that while AI offers transformative potential for ESG in banking, it also poses significant challenges that necessitate careful consideration. The final part of the paper synthesizes the survey's insights, proposing a forward-looking stance on the adoption of AI in ESG practices. We conclude with recommendations with a reference architecture for future research and development, advocating for a balanced approach that leverages AI's strengths while mitigating its risks within the ESG domain.