Goto

Collaborating Authors

 Xu, Jian


LongDocURL: a Comprehensive Multimodal Long Document Benchmark Integrating Understanding, Reasoning, and Locating

arXiv.org Artificial Intelligence

Large vision language models (LVLMs) have improved the document understanding capabilities remarkably, enabling the handling of complex document elements, longer contexts, and a wider range of tasks. However, existing document understanding benchmarks have been limited to handling only a small number of pages and fail to provide a comprehensive analysis of layout elements locating. In this paper, we first define three primary task categories: Long Document Understanding, numerical Reasoning, and cross-element Locating, and then propose a comprehensive benchmark, LongDocURL, integrating above three primary tasks and comprising 20 sub-tasks categorized based on different primary tasks and answer evidences. Furthermore, we develop a semi-automated construction pipeline and collect 2,325 high-quality question-answering pairs, covering more than 33,000 pages of documents, significantly outperforming existing benchmarks. Subsequently, we conduct comprehensive evaluation experiments on both open-source and closed-source models across 26 different configurations, revealing critical performance gaps in this field.


Explainable LLM-driven Multi-dimensional Distillation for E-Commerce Relevance Learning

arXiv.org Artificial Intelligence

Effective query-item relevance modeling is pivotal for enhancing user experience and safeguarding user satisfaction in e-commerce search systems. Recently, benefiting from the vast inherent knowledge, Large Language Model (LLM) approach demonstrates strong performance and long-tail generalization ability compared with previous neural-based specialized relevance learning methods. Though promising, current LLM-based methods encounter the following inadequacies in practice: First, the massive parameters and computational demands make it difficult to be deployed online. Second, distilling LLM models to online models is a feasible direction, but the LLM relevance modeling is a black box, and its rich intrinsic knowledge is difficult to extract and apply online. To improve the interpretability of LLM and boost the performance of online relevance models via LLM, we propose an Explainable LLM-driven Multi-dimensional Distillation framework for e-commerce relevance learning, which comprises two core components: (1) An Explainable LLM for relevance modeling (ELLM-rele), which decomposes the relevance learning into intermediate steps and models relevance learning as a Chain-of-Thought (CoT) reasoning, thereby enhancing both interpretability and performance of LLM. (2) A Multi-dimensional Knowledge Distillation (MKD) architecture that transfers the knowledge of ELLM-rele to current deployable interaction-based and representation-based student models from both the relevance score distribution and CoT reasoning aspects. Through distilling the probabilistic and CoT reasoning knowledge, MKD improves both the semantic interaction and long-tail generalization abilities of student models. Extensive offline evaluations and online experiments on Taobao search ad scene demonstrate that our proposed framework significantly enhances e-commerce relevance learning performance and user experience.


PSformer: Parameter-efficient Transformer with Segment Attention for Time Series Forecasting

arXiv.org Artificial Intelligence

Time series forecasting remains a critical challenge across various domains, often complicated by high-dimensional data and long-term dependencies. This paper presents a novel transformer architecture for time series forecasting, incorporating two key innovations: parameter sharing (PS) and Spatial-Temporal Segment Attention (SegAtt). We also define the time series segment as the concatenation of sequence patches from the same positions across different variables. The proposed model, PSformer, reduces the number of training parameters through the parameter sharing mechanism, thereby improving model efficiency and scalability. The introduction of SegAtt could enhance the capability of capturing local spatio-temporal dependencies by computing attention over the segments, and improve global representation by integrating information across segments. The combination of parameter sharing and SegAtt significantly improves the forecasting performance. Extensive experiments on benchmark datasets demonstrate that PSformer outperforms popular baselines and other transformer-based approaches in terms of accuracy and scalability, establishing itself as an accurate and scalable tool for time series forecasting. With the advancement of artificial intelligence techniques, significant efforts have been devoted to developing innovative models that continue to improve the prediction performance (Liang et al., 2024; Wang et al., 2024). In particular, the transformer-based model family has recently attracted more attention for its proved success in nature language processing (OpenAI et al., 2024) and computer vision (Liu et al., 2021; Dosovitskiy et al., 2021). Moreover, pre-trained large models based on the transformer architecture have shown advantages in time series forecasting(Liu et al., 2024a; Jin et al., 2024; Chang et al., 2023; Woo et al., 2024), demonstrating that increasing the amount of parameters in transformer models and the volume of training data can effectively enhance the model capability.


UFLUX v2.0: A Process-Informed Machine Learning Framework for Efficient and Explainable Modelling of Terrestrial Carbon Uptake

arXiv.org Artificial Intelligence

Gross Primary Productivity (GPP), the amount of carbon plants fixed by photosynthesis, is pivotal for understanding the global carbon cycle and ecosystem functioning. Process-based models built on the knowledge of ecological processes are susceptible to biases stemming from their assumptions and approximations. These limitations potentially result in considerable uncertainties in global GPP estimation, which may pose significant challenges to our Net Zero goals. This study presents UFLUX v2.0, a process-informed model that integrates state-of-art ecological knowledge and advanced machine learning techniques to reduce uncertainties in GPP estimation by learning the biases between process-based models and eddy covariance (EC) measurements. In our findings, UFLUX v2.0 demonstrated a substantial improvement in model accuracy, achieving an R^2 of 0.79 with a reduced RMSE of 1.60 g C m^-2 d^-1, compared to the process-based model's R^2 of 0.51 and RMSE of 3.09 g C m^-2 d^-1. Our global GPP distribution analysis indicates that while UFLUX v2.0 and the process-based model achieved similar global total GPP (137.47 Pg C and 132.23 Pg C, respectively), they exhibited large differences in spatial distribution, particularly in latitudinal gradients. These differences are very likely due to systematic biases in the process-based model and differing sensitivities to climate and environmental conditions. This study offers improved adaptability for GPP modelling across diverse ecosystems, and further enhances our understanding of global carbon cycles and its responses to environmental changes.


Automated Deterministic Auction Design with Objective Decomposition

arXiv.org Artificial Intelligence

Identifying high-revenue mechanisms that are both dominant strategy incentive compatible (DSIC) and individually rational (IR) is a fundamental challenge in auction design. While theoretical approaches have encountered bottlenecks in multi-item auctions, there has been much empirical progress in automated designing such mechanisms using machine learning. However, existing research primarily focuses on randomized auctions, with less attention given to the more practical deterministic auctions. Therefore, this paper investigates the automated design of deterministic auctions and introduces OD-VVCA, an objective decomposition approach for automated designing Virtual Valuations Combinatorial Auctions (VVCAs). Firstly, we restrict our mechanism to deterministic VVCAs, which are inherently DSIC and IR. Afterward, we utilize a parallelizable dynamic programming algorithm to compute the allocation and revenue outcomes of a VVCA efficiently. We then decompose the revenue objective function into continuous and piecewise constant discontinuous components, optimizing each using distinct methods. Extensive experiments show that OD-VVCA achieves high revenue in multi-item auctions, especially in large-scale settings where it outperforms both randomized and deterministic baselines, indicating its efficacy and scalability.


CMMaTH: A Chinese Multi-modal Math Skill Evaluation Benchmark for Foundation Models

arXiv.org Artificial Intelligence

Due to the rapid advancements in multimodal large language models, evaluating their multimodal mathematical capabilities continues to receive wide attention. Despite the datasets like MathVista proposed benchmarks for assessing mathematical capabilities in multimodal scenarios, there is still a lack of corresponding evaluation tools and datasets for fine-grained assessment in the context of K12 education in Chinese language. To systematically evaluate the capability of multimodal large models in solving Chinese multimodal mathematical problems, we propose a Chinese Multi-modal Math Skill Evaluation Benchmark, named CMMaTH, contraining 23k multimodal K12 math related questions, forming the largest Chinese multimodal mathematical problem benchmark to date. CMMaTH questions from elementary to high school levels, provide increased diversity in problem types, solution objectives, visual elements, detailed knowledge points, and standard solution annotations. We have constructed an open-source tool GradeGPT integrated with the CMMaTH dataset, facilitating stable, rapid, and cost-free model evaluation. Our data and code are available.


Privacy in LLM-based Recommendation: Recent Advances and Future Directions

arXiv.org Artificial Intelligence

Nowadays, large language models (LLMs) have been integrated with conventional recommendation models to improve recommendation performance. However, while most of the existing works have focused on improving the model performance, the privacy issue has only received comparatively less attention. In this paper, we review recent advancements in privacy within LLM-based recommendation, categorizing them into privacy attacks and protection mechanisms. Additionally, we highlight several challenges and propose future directions for the community to address these critical problems.


Trajectory-wise Iterative Reinforcement Learning Framework for Auto-bidding

arXiv.org Artificial Intelligence

In online advertising, advertisers participate in ad auctions to acquire ad opportunities, often by utilizing auto-bidding tools provided by demand-side platforms (DSPs). The current auto-bidding algorithms typically employ reinforcement learning (RL). However, due to safety concerns, most RL-based auto-bidding policies are trained in simulation, leading to a performance degradation when deployed in online environments. To narrow this gap, we can deploy multiple auto-bidding agents in parallel to collect a large interaction dataset. Offline RL algorithms can then be utilized to train a new policy. The trained policy can subsequently be deployed for further data collection, resulting in an iterative training framework, which we refer to as iterative offline RL. In this work, we identify the performance bottleneck of this iterative offline RL framework, which originates from the ineffective exploration and exploitation caused by the inherent conservatism of offline RL algorithms. To overcome this bottleneck, we propose Trajectory-wise Exploration and Exploitation (TEE), which introduces a novel data collecting and data utilization method for iterative offline RL from a trajectory perspective. Furthermore, to ensure the safety of online exploration while preserving the dataset quality for TEE, we propose Safe Exploration by Adaptive Action Selection (SEAS). Both offline experiments and real-world experiments on Alibaba display advertising platform demonstrate the effectiveness of our proposed method.


MEBS: Multi-task End-to-end Bid Shading for Multi-slot Display Advertising

arXiv.org Artificial Intelligence

Online bidding and auction are crucial aspects of the online advertising industry. Conventionally, there is only one slot for ad display and most current studies focus on it. Nowadays, multi-slot display advertising is gradually becoming popular where many ads could be displayed in a list and shown as a whole to users. However, multi-slot display advertising leads to different cost-effectiveness. Advertisers have the incentive to adjust bid prices so as to win the most economical ad positions. In this study, we introduce bid shading into multi-slot display advertising for bid price adjustment with a Multi-task End-to-end Bid Shading(MEBS) method. We prove the optimality of our method theoretically and examine its performance experimentally. Through extensive offline and online experiments, we demonstrate the effectiveness and efficiency of our method, and we obtain a 7.01% lift in Gross Merchandise Volume, a 7.42% lift in Return on Investment, and a 3.26% lift in ad buy count.


A Wind-Aware Path Planning Method for UAV-Asisted Bridge Inspection

arXiv.org Artificial Intelligence

In response to the gap in considering wind conditions in the bridge inspection using unmanned aerial vehicle (UAV) , this paper proposes a path planning method for UAVs that takes into account the influence of wind, based on the simulated annealing algorithm. The algorithm considers the wind factors, including the influence of different wind speeds and directions at the same time on the path planning of the UAV. Firstly, An environment model is constructed specifically for UAV bridge inspection, taking into account the various objective functions and constraint conditions of UAVs. A more sophisticated and precise mathematical model is then developed based on this environmental model to enable efficient and effective UAV path planning. Secondly, the bridge separation planning model is applied in a novel way, and a series of parameters are simulated, including the adjustment of the initial temperature value. The experimental results demonstrate that, compared with traditional local search algorithms, the proposed method achieves a cost reduction of 30.05\% and significantly improves effectiveness. Compared to path planning methods that do not consider wind factors, the proposed approach yields more realistic and practical results for UAV applications, as demonstrated by its improved effectiveness in simulations. These findings highlight the value of our method in facilitating more accurate and efficient UAV path planning in wind-prone environments.