Not enough data to create a plot.
Try a different view from the menu above.
Xu, Hongxia
Generation of Drug-Induced Cardiac Reactions towards Virtual Clinical Trials
Shao, Qian, Du, Bang, Li, Zepeng, Chen, Qiyuan, Xu, Hongxia, Sun, Jimeng, Wu, Jian, Chen, Jintai
Clinical trials are pivotal in cardiac drug development, yet they often fail due to inadequate efficacy and unexpected safety issues, leading to significant financial losses. Using in-silico trials to replace a part of physical clinical trials, e.g., leveraging advanced generative models to generate drug-influenced electrocardiograms (ECGs), seems an effective method to reduce financial risk and potential harm to trial participants. While existing generative models have demonstrated progress in ECG generation, they fall short in modeling drug reactions due to limited fidelity and inability to capture individualized drug response patterns. In this paper, we propose a Drug-Aware Diffusion Model (DADM), which could simulate individualized drug reactions while ensuring fidelity. To ensure fidelity, we construct a set of ordinary differential equations to provide external physical knowledge (EPK) of the realistic ECG morphology. The EPK is used to adaptively constrain the morphology of the generated ECGs through a dynamic cross-attention (DCA) mechanism. Furthermore, we propose an extension of ControlNet to incorporate demographic and drug data, simulating individual drug reactions. We compare DADM with the other eight state-of-the-art ECG generative models on two real-world databases covering 8 types of drug regimens. The results demonstrate that DADM can more accurately simulate drug-induced changes in ECGs, improving the accuracy by at least 5.79% and recall by 8%.
S$^2$ALM: Sequence-Structure Pre-trained Large Language Model for Comprehensive Antibody Representation Learning
Yin, Mingze, Zhou, Hanjing, Wu, Jialu, Zhu, Yiheng, Zhan, Yuxuan, Kong, Zitai, Xu, Hongxia, Hsieh, Chang-Yu, Chen, Jintai, Hou, Tingjun, Wu, Jian
Antibodies safeguard our health through their precise and potent binding to specific antigens, demonstrating promising therapeutic efficacy in the treatment of numerous diseases, including COVID-19. Recent advancements in biomedical language models have shown the great potential to interpret complex biological structures and functions. However, existing antibody specific models have a notable limitation that they lack explicit consideration for antibody structural information, despite the fact that both 1D sequence and 3D structure carry unique and complementary insights into antibody behavior and functionality. This paper proposes Sequence-Structure multi-level pre-trained Antibody Language Model (S$^2$ALM), combining holistic sequential and structural information in one unified, generic antibody foundation model. We construct a hierarchical pre-training paradigm incorporated with two customized multi-level training objectives to facilitate the modeling of comprehensive antibody representations. S$^2$ALM's representation space uncovers inherent functional binding mechanisms, biological evolution properties and structural interaction patterns. Pre-trained over 75 million sequences and 11.7 million structures, S$^2$ALM can be adopted for diverse downstream tasks: accurately predicting antigen-antibody binding affinities, precisely distinguishing B cell maturation stages, identifying antibody crucial binding positions, and specifically designing novel coronavirus-binding antibodies. Remarkably, S$^2$ALM outperforms well-established and renowned baselines and sets new state-of-the-art performance across extensive antibody specific understanding and generation tasks. S$^2$ALM's ability to model comprehensive and generalized representations further positions its potential to advance real-world therapeutic antibody development, potentially addressing unmet academic, industrial, and clinical needs.
TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets
Chen, Jintai, Hu, Yaojun, Wang, Yue, Lu, Yingzhou, Cao, Xu, Lin, Miao, Xu, Hongxia, Wu, Jian, Xiao, Cao, Sun, Jimeng, Glass, Lucas, Huang, Kexin, Zitnik, Marinka, Fu, Tianfan
Clinical trials are pivotal for developing new medical treatments, yet they typically pose some risks such as patient mortality, adverse events, and enrollment failure that waste immense efforts spanning over a decade. Applying artificial intelligence (AI) to forecast or simulate key events in clinical trials holds great potential for providing insights to guide trial designs. However, complex data collection and question definition requiring medical expertise and a deep understanding of trial designs have hindered the involvement of AI thus far. This paper tackles these challenges by presenting a comprehensive suite of meticulously curated AIready datasets covering multi-modal data (e.g., drug molecule, disease code, text, categorical/numerical features) and 8 crucial prediction challenges in clinical trial design, encompassing prediction of trial duration, patient dropout rate, serious adverse event, mortality rate, trial approval outcome, trial failure reason, drug dose finding, design of eligibility criteria. Furthermore, we provide basic validation methods for each task to ensure the datasets' usability and reliability. We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design, ultimately advancing clinical trial research and accelerating medical solution development.
Making Pre-trained Language Models Great on Tabular Prediction
Yan, Jiahuan, Zheng, Bo, Xu, Hongxia, Zhu, Yiheng, Chen, Danny Z., Sun, Jimeng, Wu, Jian, Chen, Jintai
The transferability of deep neural networks (DNNs) has made significant progress in image and language processing. However, due to the heterogeneity among tables, such DNN bonus is still far from being well exploited on tabular data prediction (e.g., regression or classification tasks). Condensing knowledge from diverse domains, language models (LMs) possess the capability to comprehend feature names from various tables, potentially serving as versatile learners in transferring knowledge across distinct tables and diverse prediction tasks, but their discrete text representation space is inherently incompatible with numerical feature values in tables. In this paper, we present TP-BERTa, a specifically pre-trained LM for tabular data prediction. Concretely, a novel relative magnitude tokenization converts scalar numerical feature values to finely discrete, high-dimensional tokens, and an intra-feature attention approach integrates feature values with the corresponding feature names. Comprehensive experiments demonstrate that our pre-trained TP-BERTa leads the performance among tabular DNNs and is competitive with Gradient Boosted Decision Tree models in typical tabular data regime.
Generative AI for Controllable Protein Sequence Design: A Survey
Zhu, Yiheng, Kong, Zitai, Wu, Jialu, Liu, Weize, Han, Yuqiang, Yin, Mingze, Xu, Hongxia, Hsieh, Chang-Yu, Hou, Tingjun
The design of novel protein sequences with targeted functionalities underpins a central theme in protein engineering, impacting diverse fields such as drug discovery and enzymatic engineering. However, navigating this vast combinatorial search space remains a severe challenge due to time and financial constraints. This scenario is rapidly evolving as the transformative advancements in AI, particularly in the realm of generative models and optimization algorithms, have been propelling the protein design field towards an unprecedented revolution. In this survey, we systematically review recent advances in generative AI for controllable protein sequence design. To set the stage, we first outline the foundational tasks in protein sequence design in terms of the constraints involved and present key generative models and optimization algorithms. We then offer in-depth reviews of each design task and discuss the pertinent applications. Finally, we identify the unresolved challenges and highlight research opportunities that merit deeper exploration.
Multimodal Clinical Trial Outcome Prediction with Large Language Models
Zheng, Wenhao, Peng, Dongsheng, Xu, Hongxia, Zhu, Hongtu, Fu, Tianfan, Yao, Huaxiu
The clinical trial is a pivotal and costly process, often spanning multiple years and requiring substantial financial resources. Therefore, the development of clinical trial outcome prediction models aims to exclude drugs likely to fail and holds the potential for significant cost savings. Recent data-driven attempts leverage deep learning methods to integrate multimodal data for predicting clinical trial outcomes. However, these approaches rely on manually designed modal-specific encoders, which limits both the extensibility to adapt new modalities and the ability to discern similar information patterns across different modalities. To address these issues, we propose a multimodal mixture-of-experts (LIFTED) approach for clinical trial outcome prediction. Specifically, LIFTED unifies different modality data by transforming them into natural language descriptions. Then, LIFTED constructs unified noise-resilient encoders to extract information from modal-specific language descriptions. Subsequently, a sparse Mixture-of-Experts framework is employed to further refine the representations, enabling LIFTED to identify similar information patterns across different modalities and extract more consistent representations from those patterns using the same expert model. Finally, a mixture-of-experts module is further employed to dynamically integrate different modality representations for prediction, which gives LIFTED the ability to automatically weigh different modalities and pay more attention to critical information. The experiments demonstrate that LIFTED significantly enhances performance in predicting clinical trial outcomes across all three phases compared to the best baseline, showcasing the effectiveness of our proposed key components.
Mind's Mirror: Distilling Self-Evaluation Capability and Comprehensive Thinking from Large Language Models
Liu, Weize, Li, Guocong, Zhang, Kai, Du, Bang, Chen, Qiyuan, Hu, Xuming, Xu, Hongxia, Chen, Jintai, Wu, Jian
Large language models (LLMs) have achieved remarkable advancements in the field of natural language processing. However, the sheer scale and computational demands of these models present formidable challenges when considering their practical deployment in resource-constrained contexts. While techniques such as chain-of-thought (CoT) distillation have displayed promise in distilling LLMs into small language models (SLMs), there is a risk that distilled SLMs may still carry over flawed reasoning or hallucinations inherited from their LLM counterparts. To address these issues, we propose a twofold methodology: First, we introduce a novel method for distilling the self-evaluation capability inherent in LLMs into SLMs, which aims to mitigate the adverse effects of erroneous reasoning and reduce hallucinations. Second, we advocate for a comprehensive distillation process that incorporates multiple distinct chain-of-thought and self-evaluation paradigms and ensures a more holistic and robust knowledge transfer into SLMs. Experiments on three NLP benchmarks demonstrate that our method significantly improves the performance of distilled SLMs and sheds light on the path towards developing smaller models closely aligned with human cognition.