Not enough data to create a plot.
Try a different view from the menu above.
Xu, Chengzhong
Adaptive Bi-Recommendation and Self-Improving Network for Heterogeneous Domain Adaptation-Assisted IoT Intrusion Detection
Wu, Jiashu, Wang, Yang, Dai, Hao, Xu, Chengzhong, Kent, Kenneth B.
As Internet of Things devices become prevalent, using intrusion detection to protect IoT from malicious intrusions is of vital importance. However, the data scarcity of IoT hinders the effectiveness of traditional intrusion detection methods. To tackle this issue, in this paper, we propose the Adaptive Bi-Recommendation and Self-Improving Network (ABRSI) based on unsupervised heterogeneous domain adaptation (HDA). The ABRSI transfers enrich intrusion knowledge from a data-rich network intrusion source domain to facilitate effective intrusion detection for data-scarce IoT target domains. The ABRSI achieves fine-grained intrusion knowledge transfer via adaptive bi-recommendation matching. Matching the bi-recommendation interests of two recommender systems and the alignment of intrusion categories in the shared feature space form a mutual-benefit loop. Besides, the ABRSI uses a self-improving mechanism, autonomously improving the intrusion knowledge transfer from four ways. A hard pseudo label voting mechanism jointly considers recommender system decision and label relationship information to promote more accurate hard pseudo label assignment. To promote diversity and target data participation during intrusion knowledge transfer, target instances failing to be assigned with a hard pseudo label will be assigned with a probabilistic soft pseudo label, forming a hybrid pseudo-labelling strategy. Meanwhile, the ABRSI also makes soft pseudo-labels globally diverse and individually certain. Finally, an error knowledge learning mechanism is utilised to adversarially exploit factors that causes detection ambiguity and learns through both current and previous error knowledge, preventing error knowledge forgetfulness. Holistically, these mechanisms form the ABRSI model that boosts IoT intrusion detection accuracy via HDA-assisted intrusion knowledge transfer.
LiDAR Road-Atlas: An Efficient Map Representation for General 3D Urban Environment
Wu, Banghe, Xu, Chengzhong, Kong, Hui
In this work, we propose the LiDAR Road-Atlas, a compactable and efficient 3D map representation, for autonomous robot or vehicle navigation in general urban environment. The LiDAR Road-Atlas can be generated by an online mapping framework based on incrementally merging local 2D occupancy grid maps (2D-OGM). Specifically, the contributions of our LiDAR Road-Atlas representation are threefold. First, we solve the challenging problem of creating local 2D-OGM in non-structured urban scenes based on a real-time delimitation of traversable and curb regions in LiDAR point cloud. Second, we achieve accurate 3D mapping in multiple-layer urban road scenarios by a probabilistic fusion scheme. Third, we achieve very efficient 3D map representation of general environment thanks to the automatic local-OGM induced traversable-region labeling and a sparse probabilistic local point-cloud encoding. Given the LiDAR Road-Atlas, one can achieve accurate vehicle localization, path planning and some other tasks. Our map representation is insensitive to dynamic objects which can be filtered out in the resulting map based on a probabilistic fusion. Empirically, we compare our map representation with a couple of popular map representation methods in robotics and autonomous driving societies, and our map representation is more favorable in terms of efficiency, scalability and compactness. In addition, we also evaluate localization accuracy extensively given the created LiDAR Road-Atlas representations on several public benchmark datasets. With a 16-channel LiDAR sensor, our method achieves an average global localization errors of 0.26m (translation) and 1.07 degrees (rotation) on the Apollo dataset, and 0.89m (translation) and 1.29 degrees (rotation) on the MulRan dataset, respectively, at 10Hz, which validates the promising performance of our map representation for autonomous driving.
Integrated Sensing and Communication from Learning Perspective: An SDP3 Approach
Li, Guoliang, Wang, Shuai, Li, Jie, Wang, Rui, Liu, Fan, Peng, Xiaohui, Han, Tony Xiao, Xu, Chengzhong
Characterizing the sensing and communication performance tradeoff in integrated sensing and communication (ISAC) systems is challenging in the applications of learning-based human motion recognition. This is because of the large experimental datasets and the black-box nature of deep neural networks. This paper presents SDP3, a Simulation-Driven Performance Predictor and oPtimizer, which consists of SDP3 data simulator, SDP3 performance predictor and SDP3 performance optimizer. Specifically, the SDP3 data simulator generates vivid wireless sensing datasets in a virtual environment, the SDP3 performance predictor predicts the sensing performance based on the function regression method, and the SDP3 performance optimizer investigates the sensing and communication performance tradeoff analytically. It is shown that the simulated sensing dataset matches the experimental dataset very well in the motion recognition accuracy. By leveraging SDP3, it is found that the achievable region of recognition accuracy and communication throughput consists of a communication saturation zone, a sensing saturation zone, and a communication-sensing adversarial zone, of which the desired balanced performance for ISAC systems lies in the third one.
Heterogeneous Domain Adaptation for IoT Intrusion Detection: A Geometric Graph Alignment Approach
Wu, Jiashu, Dai, Hao, Wang, Yang, Ye, Kejiang, Xu, Chengzhong
Data scarcity hinders the usability of data-dependent algorithms when tackling IoT intrusion detection (IID). To address this, we utilise the data rich network intrusion detection (NID) domain to facilitate more accurate intrusion detection for IID domains. In this paper, a Geometric Graph Alignment (GGA) approach is leveraged to mask the geometric heterogeneities between domains for better intrusion knowledge transfer. Specifically, each intrusion domain is formulated as a graph where vertices and edges represent intrusion categories and category-wise interrelationships, respectively. The overall shape is preserved via a confused discriminator incapable to identify adjacency matrices between different intrusion domain graphs. A rotation avoidance mechanism and a centre point matching mechanism is used to avoid graph misalignment due to rotation and symmetry, respectively. Besides, category-wise semantic knowledge is transferred to act as vertex-level alignment. To exploit the target data, a pseudo-label election mechanism that jointly considers network prediction, geometric property and neighbourhood information is used to produce fine-grained pseudo-label assignment. Upon aligning the intrusion graphs geometrically from different granularities, the transferred intrusion knowledge can boost IID performance. Comprehensive experiments on several intrusion datasets demonstrate state-of-the-art performance of the GGA approach and validate the usefulness of GGA constituting components.
Federated Deep Learning Meets Autonomous Vehicle Perception: Design and Verification
Wang, Shuai, Li, Chengyang, Ng, Derrick Wing Kwan, Eldar, Yonina C., Poor, H. Vincent, Hao, Qi, Xu, Chengzhong
Realizing human-like perception is a challenge in open driving scenarios due to corner cases and visual occlusions. To gather knowledge of rare and occluded instances, federated learning assisted connected autonomous vehicle (FLCAV) has been proposed, which leverages vehicular networks to establish federated deep neural networks (DNNs) from distributed data captured by vehicles and road sensors. Without the need of data aggregation, FLCAV preserves privacy while reducing communication costs compared with conventional centralized learning. However, it is challenging to determine the network resources and road sensor placements for multi-stage training with multi-modal datasets in multi-variant scenarios. This article presents networking and training frameworks for FLCAV perception. Multi-layer graph resource allocation and vehicle-road contrastive sensor placement are proposed to address the network management and sensor deployment problems, respectively. We also develop CarlaFLCAV, a software platform that implements the above system and methods. Experimental results confirm the superiority of the proposed techniques compared with various benchmarks.
Incorporating Reachability Knowledge into a Multi-Spatial Graph Convolution Based Seq2Seq Model for Traffic Forecasting
Ye, Jiexia, Zheng, Furong, Zhao, Juanjuan, Ye, Kejiang, Xu, Chengzhong
Accurate traffic state prediction is the foundation of transportation control and guidance. It is very challenging due to the complex spatiotemporal dependencies in traffic data. Existing works cannot perform well for multi-step traffic prediction that involves long future time period. The spatiotemporal information dilution becomes serve when the time gap between input step and predicted step is large, especially when traffic data is not sufficient or noisy. To address this issue, we propose a multi-spatial graph convolution based Seq2Seq model. Our main novelties are three aspects: (1) We enrich the spatiotemporal information of model inputs by fusing multi-view features (time, location and traffic states) (2) We build multiple kinds of spatial correlations based on both prior knowledge and data-driven knowledge to improve model performance especially in insufficient or noisy data cases. (3) A spatiotemporal attention mechanism based on reachability knowledge is novelly designed to produce high-level features fed into decoder of Seq2Seq directly to ease information dilution. Our model is evaluated on two real world traffic datasets and achieves better performance than other competitors.
Multi-View TRGRU: Transformer based Spatiotemporal Model for Short-Term Metro Origin-Destination Matrix Prediction
Ye, Jiexia, Zheng, Furong, Zhao, Juanjuan, Ye, Kejiang, Xu, Chengzhong
Accurate prediction of short-term OD Matrix (i.e. the distribution of passenger flows from various origins to destinations) is a crucial task in metro systems. It is highly challenging due to the constantly changing nature of many impacting factors and the real-time de- layed data collection problem. Recently, some deep learning-based models have been proposed for OD Matrix forecasting in ride- hailing and high way traffic scenarios. However, these models can not sufficiently capture the complex spatiotemporal correlation between stations in metro networks due to their different prior knowledge and contextual settings. In this paper we propose a hy- brid framework Multi-view TRGRU to address OD metro matrix prediction. In particular, it uses three modules to model three flow change patterns: recent trend, daily trend, weekly trend. In each module, a multi-view representation based on embedding for each station is constructed and fed into a transformer based gated re- current structure so as to capture the dynamic spatial dependency in OD flows of different stations by a global self-attention mecha- nism. Extensive experiments on three large-scale, real-world metro datasets demonstrate the superiority of our Multi-view TRGRU over other competitors.
A Deep Reinforcement Learning Approach for Traffic Signal Control Optimization
Li, Zhenning, Xu, Chengzhong, Zhang, Guohui
Inefficient traffic signal control methods may cause numerous problems, such as traffic congestion and waste of energy. Reinforcement learning (RL) is a trending data-driven approach for adaptive traffic signal control in complex urban traffic networks. Although the development of deep neural networks (DNN) further enhances its learning capability, there are still some challenges in applying deep RLs to transportation networks with multiple signalized intersections, including non-stationarity environment, exploration-exploitation dilemma, multi-agent training schemes, continuous action spaces, etc. In order to address these issues, this paper first proposes a multi-agent deep deterministic policy gradient (MADDPG) method by extending the actor-critic policy gradient algorithms. MADDPG has a centralized learning and decentralized execution paradigm in which critics use additional information to streamline the training process, while actors act on their own local observations. The model is evaluated via simulation on the Simulation of Urban MObility (SUMO) platform. Model comparison results show the efficiency of the proposed algorithm in controlling traffic lights.
Towards Accurate Knowledge Transfer via Target-awareness Representation Disentanglement
Li, Xingjian, Hu, Di, Li, Xuhong, Xiong, Haoyi, Ye, Zhi, Wang, Zhipeng, Xu, Chengzhong, Dou, Dejing
Fine-tuning deep neural networks pre-trained on large scale datasets is one of the most practical transfer learning paradigm given limited quantity of training samples. To obtain better generalization, using the starting point as the reference, either through weights or features, has been successfully applied to transfer learning as a regularizer. However, due to the domain discrepancy between the source and target tasks, there exists obvious risk of negative transfer. In this paper, we propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED), where the relevant knowledge with respect to the target task is disentangled from the original source model and used as a regularizer during fine-tuning the target model. Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average. TRED also outperforms other state-of-the-art transfer learning regularizers such as L2-SP, AT, DELTA and BSS.
XMixup: Efficient Transfer Learning with Auxiliary Samples by Cross-domain Mixup
Li, Xingjian, Xiong, Haoyi, An, Haozhe, Xu, Chengzhong, Dou, Dejing
Transferring knowledge from large source datasets is an effective way to fine-tune the deep neural networks of the target task with a small sample size. A great number of algorithms have been proposed to facilitate deep transfer learning, and these techniques could be generally categorized into two groups - Regularized Learning of the target task using models that have been pre-trained from source datasets, and Multitask Learning with both source and target datasets to train a shared backbone neural network. In this work, we aim to improve the multitask paradigm for deep transfer learning via Cross-domain Mixup (XMixup). While the existing multitask learning algorithms need to run backpropagation over both the source and target datasets and usually consume a higher gradient complexity, XMixup transfers the knowledge from source to target tasks more efficiently: for every class of the target task, XMixup selects the auxiliary samples from the source dataset and augments training samples via the simple mixup strategy. We evaluate XMixup over six real world transfer learning datasets. Experiment results show that XMixup improves the accuracy by 1.9% on average. Compared with other state-of-the-art transfer learning approaches, XMixup costs much less training time while still obtains higher accuracy.