Plotting

 Xu, Chengzhong


SafeCast: Risk-Responsive Motion Forecasting for Autonomous Vehicles

arXiv.org Artificial Intelligence

Accurate motion forecasting is essential for the safety and reliability of autonomous driving (AD) systems. While existing methods have made significant progress, they often overlook explicit safety constraints and struggle to capture the complex interactions among traffic agents, environmental factors, and motion dynamics. To address these challenges, we present SafeCast, a risk-responsive motion forecasting model that integrates safety-aware decision-making with uncertainty-aware adaptability. SafeCast is the first to incorporate the Responsibility-Sensitive Safety (RSS) framework into motion forecasting, encoding interpretable safety rules--such as safe distances and collision avoidance--based on traffic norms and physical principles. To further enhance robustness, we introduce the Graph Uncertainty Feature (GUF), a graph-based module that injects learnable noise into Graph Attention Networks, capturing real-world uncertainties and enhancing generalization across diverse scenarios. We evaluate SafeCast on four real-world benchmark datasets--Next Generation Simulation (NGSIM), Highway Drone (HighD), ApolloScape, and the Macao Connected Autonomous Driving (MoCAD)--covering highway, urban, and mixed-autonomy traffic environments. Our model achieves state-of-the-art (SOTA) accuracy while maintaining a lightweight architecture and low inference latency, underscoring its potential for real-time deployment in safety-critical AD systems.


FLIP: Towards Comprehensive and Reliable Evaluation of Federated Prompt Learning

arXiv.org Artificial Intelligence

The increasing emphasis on privacy and data security has driven the adoption of federated learning, a decentralized approach to train machine learning models without sharing raw data. Prompt learning, which fine-tunes prompt embeddings of pretrained models, offers significant advantages in federated settings by reducing computational costs and communication overheads while leveraging the strong performance and generalization capabilities of vision-language models such as CLIP. This paper addresses the intersection of federated learning and prompt learning, particularly for vision-language models. In this work, we introduce a comprehensive framework, named FLIP, to evaluate federated prompt learning algorithms. FLIP assesses the performance of 8 state-of-the-art federated prompt learning methods across 4 federated learning protocols and 12 open datasets, considering 6 distinct evaluation scenarios. Our findings demonstrate that prompt learning maintains strong generalization performance in both in-distribution and out-of-distribution settings with minimal resource consumption. This work highlights the effectiveness of federated prompt learning in environments characterized by data scarcity, unseen classes, and cross-domain distributional shifts. We open-source the code for all implemented algorithms in FLIP to facilitate further research in this domain.


A Survey on Federated Fine-tuning of Large Language Models

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have achieved remarkable success across a wide range of tasks, with fine-tuning playing a pivotal role in adapting them to specific downstream applications. Federated Learning (FL) offers a promising approach that enables collaborative model adaptation while ensuring data privacy, i.e., FedLLM. In this survey, we provide a systematic and thorough review of the integration of LLMs with FL. Specifically, we first trace the historical evolution of both LLMs and FL, while summarizing relevant prior surveys. We then present an in-depth analysis of the fundamental challenges encountered in deploying FedLLM. Following this, we conduct an extensive study of existing parameter-efficient fine-tuning (PEFT) methods and explore their applicability in FL. Furthermore, we introduce a comprehensive evaluation benchmark to rigorously assess FedLLM performance and discuss its diverse real-world applications across multiple domains. Finally, we identify critical open challenges and outline promising research directions to drive future advancements in FedLLM. We maintain an active \href{https://github.com/Clin0212/Awesome-Federated-LLM-Learning}{GitHub repository} tracking cutting-edge advancements. This survey serves as a foundational resource for researchers and practitioners, offering insights into the evolving landscape of federated fine-tuning for LLMs while guiding future innovations in privacy-preserving AI.


CoT-Drive: Efficient Motion Forecasting for Autonomous Driving with LLMs and Chain-of-Thought Prompting

arXiv.org Artificial Intelligence

Accurate motion forecasting is crucial for safe autonomous driving (AD). This study proposes CoT-Drive, a novel approach that enhances motion forecasting by leveraging large language models (LLMs) and a chain-of-thought (CoT) prompting method. We introduce a teacher-student knowledge distillation strategy to effectively transfer LLMs' advanced scene understanding capabilities to lightweight language models (LMs), ensuring that CoT-Drive operates in real-time on edge devices while maintaining comprehensive scene understanding and generalization capabilities. By leveraging CoT prompting techniques for LLMs without additional training, CoT-Drive generates semantic annotations that significantly improve the understanding of complex traffic environments, thereby boosting the accuracy and robustness of predictions. Additionally, we present two new scene description datasets, Highway-Text and Urban-Text, designed for fine-tuning lightweight LMs to generate context-specific semantic annotations. Comprehensive evaluations of five real-world datasets demonstrate that CoT-Drive outperforms existing models, highlighting its effectiveness and efficiency in handling complex traffic scenarios. Overall, this study is the first to consider the practical application of LLMs in this field. It pioneers the training and use of a lightweight LLM surrogate for motion forecasting, setting a new benchmark and showcasing the potential of integrating LLMs into AD systems.


Minds on the Move: Decoding Trajectory Prediction in Autonomous Driving with Cognitive Insights

arXiv.org Artificial Intelligence

--In mixed autonomous driving environments, accurately predicting the future trajectories of surrounding vehicles is crucial for the safe operation of autonomous vehicles (A Vs). In driving scenarios, a vehicle's trajectory is determined by the decision-making process of human drivers. However, existing models primarily focus on the inherent statistical patterns in the data, often neglecting the critical aspect of understanding the decision-making processes of human drivers. This oversight results in models that fail to capture the true intentions of human drivers, leading to suboptimal performance in long-term trajectory prediction. T o address this limitation, we introduce a Cognitive-Informed Transformer (CITF) that incorporates a cognitive concept, Perceived Safety, to interpret drivers' decision-making mechanisms. Specifically, we develop a Perceived Safety-aware Module that includes a Quantitative Safety Assessment for measuring the subject risk levels within scenarios, and Driver Behavior Profiling for characterizing driver behaviors. Furthermore, we present a novel module, Leanformer, designed to capture social interactions among vehicles. CITF demonstrates significant performance improvements on three well-established datasets. Additionally, its robustness in scenarios with limited or missing data is evident, surpassing most state-of-the-art (SOT A) baselines, and paving the way for real-world applications. N the evolving landscape of autonomous driving (AD) systems, the complex interactions between autonomous vehicles (A Vs) and human-driven vehicles (HVs) present a significant challenge to achieving accurate trajectory prediction [1], [2]. The future trajectory of human-driven vehicles is essentially the result of the human driver's decision-making process [3], [4]. Corresponding author; * Authors contributed equally. Haicheng Liao, Chengyue Wang, Kaiqun Zhu, Chengzhong Xu, and Zhenning Li are with the State Key Laboratory of Internet of Things for Smart City, University of Macau, Macau. Yilong Ren is with the School of Transportation Science and Engineering, Beihang University, Beijing, China. Bolin Gao and Shengbo Eben Li are with the School of V ehicle and Mobility, Tsinghua University, Beijing, China. This research is supported by the State Key Lab of Intelligent Transportation System under Project (2024-B001), Science and Technology Development Fund of Macau SAR (File no. Nevertheless, long-term prediction necessitates models that accurately estimate the impact of numerous factors on the decision-making process of human drivers, a feat that is particularly challenging to achieve [8].


Scaling Laws for Floating Point Quantization Training

arXiv.org Artificial Intelligence

Low-precision training is considered an effective strategy for reducing both training and downstream inference costs. Previous scaling laws for precision mainly focus on integer quantization, which pay less attention to the constituents in floating-point quantization and thus cannot well fit the LLM losses in this scenario. In contrast, while floating-point quantization training is more commonly implemented in production, the research on it has been relatively superficial. In this paper, we thoroughly explore the effects of floating-point quantization targets, exponent bits, mantissa bits, and the calculation granularity of the scaling factor in floating-point quantization training performance of LLM models. While presenting an accurate floating-point quantization unified scaling law, we also provide valuable suggestions for the community: (1) Exponent bits contribute slightly more to the model performance than mantissa bits. We provide the optimal exponent-mantissa bit ratio for different bit numbers, which is available for future reference by hardware manufacturers; (2) We discover the formation of the critical data size in low-precision LLM training. Too much training data exceeding the critical data size will inversely bring in degradation of LLM performance; (3) The optimal floating-point quantization precision is directly proportional to the computational power, but within a wide computational power range, we estimate that the best cost-performance precision lies between 4-8 bits.


Clutter Resilient Occlusion Avoidance for Tightly-Coupled Motion-Assisted Detection

arXiv.org Artificial Intelligence

Occlusion is a key factor leading to detection failures. This paper proposes a motion-assisted detection (MAD) method that actively plans an executable path, for the robot to observe the target at a new viewpoint with potentially reduced occlusion. In contrast to existing MAD approaches that may fail in cluttered environments, the proposed framework is robust in such scenarios, therefore termed clutter resilient occlusion avoidance (CROA). The crux to CROA is to minimize the occlusion probability under polyhedron-based collision avoidance constraints via the convex-concave procedure and duality-based bilevel optimization. The system implementation supports lidar-based MAD with intertwined execution of learning-based detection and optimization-based planning. Experiments show that CROA outperforms various MAD schemes under a sparse convolutional neural network detector, in terms of point density, occlusion ratio, and detection error, in a multi-lane urban driving scenario.


NEST: A Neuromodulated Small-world Hypergraph Trajectory Prediction Model for Autonomous Driving

arXiv.org Artificial Intelligence

Accurate trajectory prediction is essential for the safety and efficiency of autonomous driving. Traditional models often struggle with real-time processing, capturing non-linearity and uncertainty in traffic environments, efficiency in dense traffic, and modeling temporal dynamics of interactions. We introduce NEST (Neuromodulated Small-world Hypergraph Trajectory Prediction), a novel framework that integrates Small-world Networks and hypergraphs for superior interaction modeling and prediction accuracy. This integration enables the capture of both local and extended vehicle interactions, while the Neuromodulator component adapts dynamically to changing traffic conditions. We validate the NEST model on several real-world datasets, including nuScenes, MoCAD, and HighD. The results consistently demonstrate that NEST outperforms existing methods in various traffic scenarios, showcasing its exceptional generalization capability, efficiency, and temporal foresight. Our comprehensive evaluation illustrates that NEST significantly improves the reliability and operational efficiency of autonomous driving systems, making it a robust solution for trajectory prediction in complex traffic environments.


Hunyuan-Large: An Open-Source MoE Model with 52 Billion Activated Parameters by Tencent

arXiv.org Artificial Intelligence

In this paper, we introduce Hunyuan-Large, which is currently the largest open-source Transformer-based mixture of experts model, with a total of 389 billion parameters and 52 billion activation parameters, capable of handling up to 256K tokens. We conduct a thorough evaluation of Hunyuan-Large's superior performance across various benchmarks including language understanding and generation, logical reasoning, mathematical problem-solving, coding, long-context, and aggregated tasks, where it outperforms LLama3.1-70B and exhibits comparable performance when compared to the significantly larger LLama3.1-405B model. Key practice of Hunyuan-Large include large-scale synthetic data that is orders larger than in previous literature, a mixed expert routing strategy, a key-value cache compression technique, and an expert-specific learning rate strategy. Additionally, we also investigate the scaling laws and learning rate schedule of mixture of experts models, providing valuable insights and guidances for future model development and optimization. The code and checkpoints of Hunyuan-Large are released to facilitate future innovations and applications. Codes: https://github.com/Tencent/Hunyuan-Large Models: https://huggingface.co/tencent/Tencent-Hunyuan-Large


Multi-Uncertainty Aware Autonomous Cooperative Planning

arXiv.org Artificial Intelligence

Autonomous cooperative planning (ACP) is a promising technique to improve the efficiency and safety of multi-vehicle interactions for future intelligent transportation systems. However, realizing robust ACP is a challenge due to the aggregation of perception, motion, and communication uncertainties. This paper proposes a novel multi-uncertainty aware ACP (MUACP) framework that simultaneously accounts for multiple types of uncertainties via regularized cooperative model predictive control (RC-MPC). The regularizers and constraints for perception, motion, and communication are constructed according to the confidence levels, weather conditions, and outage probabilities, respectively. The effectiveness of the proposed method is evaluated in the Car Learning to Act (CARLA) simulation platform. Results demonstrate that the proposed MUACP efficiently performs cooperative formation in real time and outperforms other benchmark approaches in various scenarios under imperfect knowledge of the environment.