Goto

Collaborating Authors

 Xu, Chang


Surgical Triplet Recognition via Diffusion Model

arXiv.org Artificial Intelligence

Surgical triplet recognition is an essential building block to enable next-generation context-aware operating rooms. The goal is to identify the combinations of instruments, verbs, and targets presented in surgical video frames. In this paper, we propose DiffTriplet, a new generative framework for surgical triplet recognition employing the diffusion model, which predicts surgical triplets via iterative denoising. To handle the challenge of triplet association, two unique designs are proposed in our diffusion framework, i.e., association learning and association guidance. During training, we optimize the model in the joint space of triplets and individual components to capture the dependencies among them. At inference, we integrate association constraints into each update of the iterative denoising process, which refines the triplet prediction using the information of individual components. Experiments on the CholecT45 and CholecT50 datasets show the superiority of the proposed method in achieving a new state-of-the-art performance for surgical triplet recognition. Our codes will be released.


Locating and Extracting Relational Concepts in Large Language Models

arXiv.org Artificial Intelligence

Relational concepts are indeed foundational to the structure of knowledge representation, as they facilitate the association between various entity concepts, allowing us to express and comprehend complex world knowledge. By expressing relational concepts in natural language prompts, people can effortlessly interact with large language models (LLMs) and recall desired factual knowledge. However, the process of knowledge recall lacks interpretability, and representations of relational concepts within LLMs remain unknown to us. In this paper, we identify hidden states that can express entity and relational concepts through causal mediation analysis in fact recall processes. Our finding reveals that at the last token position of the input prompt, there are hidden states that solely express the causal effects of relational concepts. Based on this finding, we assume that these hidden states can be treated as relational representations and we can successfully extract them from LLMs. The experimental results demonstrate high credibility of the relational representations: they can be flexibly transplanted into other fact recall processes, and can also be used as robust entity connectors. Moreover, we also show that the relational representations exhibit significant potential for controllable fact recall through relation rewriting.


Can AI Beat Undergraduates in Entry-level Java Assignments? Benchmarking Large Language Models on JavaBench

arXiv.org Artificial Intelligence

Code generation benchmarks such as HumanEval are widely adopted to evaluate LLMs' capabilities. However, after consolidating the latest 24 benchmarks, we noticed three significant imbalances. First, imbalanced programming language. 95.8% of benchmarks involve Python, while only 5 benchmarks involve Java. Second, imbalanced code granularity. Function-/statement-level benchmarks account for over 83.3% of benchmarks. Only a mere handful extends to class-/project-levels, and all are limited to Python. Third, lacking advanced features. Existing benchmarks primarily assess basic coding skills, while overlooking advanced Object-Oriented Programming (OOP) features (i.e., encapsulation, inheritance, and polymorphism). To fill these gaps, we propose JavaBench, a project-level Java benchmark that exercises OOP features. It comprises four Java projects with 389 methods in 106 Java classes. The test coverage is up to 92%, and JavaBench is attested by 282 undergraduate students, reaching a 90.93/100 average score (i.e., pass rate against the test suite), ensuring the quality of documentation, code skeleton, and tests. To better evaluate LLM's capability against JavaBench, we introduce a systematic evaluation design covering three context settings and five synthesis strategies at two granularities using three hierarchical metrics. Our extensive experiment yields several interesting findings. First, we noticed that regarding project-level Java programming, LLMs are far behind undergraduate students (no project can be correctly completed by any studied LLMs, and at most 41.17% Pass@5 in a more relaxed evaluation). Second, using method signature as prompt context may strike an ideal balance for project-level code generation. JavaBench is publicly available at https://github.com/java-bench/JavaBench.


Collage Prompting: Budget-Friendly Visual Recognition with GPT-4V

arXiv.org Artificial Intelligence

Recent advancements in generative AI have suggested that by taking visual prompt, GPT-4V can demonstrate significant proficiency in image recognition task. Despite its impressive capabilities, the financial cost associated with GPT-4V's inference presents a substantial barrier for its wide use. To address this challenge, our work introduces Collage Prompting, a budget-friendly prompting approach that concatenates multiple images into a single visual input. With collage prompt, GPT-4V is able to perform image recognition on several images simultaneously. Based on the observation that the accuracy of GPT-4V's image recognition varies significantly with the order of images within the collage prompt, our method further learns to optimize the arrangement of images for maximum recognition accuracy. A graph predictor is trained to indicate the accuracy of each collage prompt, then we propose an optimization method to navigate the search space of possible image arrangements. Experiment results across various datasets demonstrate the cost-efficiency score of collage prompt is much larger than standard prompt. Additionally, collage prompt with learned arrangement achieves clearly better accuracy than collage prompt with random arrangement in GPT-4V's visual recognition.


MG-TSD: Multi-Granularity Time Series Diffusion Models with Guided Learning Process

arXiv.org Artificial Intelligence

Recently, diffusion probabilistic models have attracted attention in generative time series forecasting due to their remarkable capacity to generate high-fidelity samples. However, the effective utilization of their strong modeling ability in the probabilistic time series forecasting task remains an open question, partially due to the challenge of instability arising from their stochastic nature. To address this challenge, we introduce a novel Multi-Granularity Time Series Diffusion (MG-TSD) model, which achieves state-of-the-art predictive performance by leveraging the inherent granularity levels within the data as given targets at intermediate diffusion steps to guide the learning process of diffusion models. The way to construct the targets is motivated by the observation that the forward process of the diffusion model, which sequentially corrupts the data distribution to a standard normal distribution, intuitively aligns with the process of smoothing fine-grained data into a coarse-grained representation, both of which result in a gradual loss of fine distribution features. In the study, we derive a novel multi-granularity guidance diffusion loss function and propose a concise implementation method to effectively utilize coarse-grained data across various granularity levels. More importantly, our approach does not rely on additional external data, making it versatile and applicable across various domains. Extensive experiments conducted on real-world datasets demonstrate that our MG-TSD model outperforms existing time series prediction methods.


LocalMamba: Visual State Space Model with Windowed Selective Scan

arXiv.org Artificial Intelligence

Recent advancements in state space models, notably Mamba, have demonstrated significant progress in modeling long sequences for tasks like language understanding. Yet, their application in vision tasks has not markedly surpassed the performance of traditional Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs). This paper posits that the key to enhancing Vision Mamba (ViM) lies in optimizing scan directions for sequence modeling. Traditional ViM approaches, which flatten spatial tokens, overlook the preservation of local 2D dependencies, thereby elongating the distance between adjacent tokens. We introduce a novel local scanning strategy that divides images into distinct windows, effectively capturing local dependencies while maintaining a global perspective. Additionally, acknowledging the varying preferences for scan patterns across different network layers, we propose a dynamic method to independently search for the optimal scan choices for each layer, substantially improving performance. Extensive experiments across both plain and hierarchical models underscore our approach's superiority in effectively capturing image representations. For example, our model significantly outperforms Vim-Ti by 3.1% on ImageNet with the same 1.5G FLOPs. Code is available at: https: //github.com/hunto/LocalMamba.


EfficientVMamba: Atrous Selective Scan for Light Weight Visual Mamba

arXiv.org Artificial Intelligence

Prior efforts in light-weight model development mainly centered on CNN and Transformer-based designs yet faced persistent challenges. CNNs adept at local feature extraction compromise resolution while Transformers offer global reach but escalate computational demands $\mathcal{O}(N^2)$. This ongoing trade-off between accuracy and efficiency remains a significant hurdle. Recently, state space models (SSMs), such as Mamba, have shown outstanding performance and competitiveness in various tasks such as language modeling and computer vision, while reducing the time complexity of global information extraction to $\mathcal{O}(N)$. Inspired by this, this work proposes to explore the potential of visual state space models in light-weight model design and introduce a novel efficient model variant dubbed EfficientVMamba. Concretely, our EfficientVMamba integrates a atrous-based selective scan approach by efficient skip sampling, constituting building blocks designed to harness both global and local representational features. Additionally, we investigate the integration between SSM blocks and convolutions, and introduce an efficient visual state space block combined with an additional convolution branch, which further elevate the model performance. Experimental results show that, EfficientVMamba scales down the computational complexity while yields competitive results across a variety of vision tasks. For example, our EfficientVMamba-S with $1.3$G FLOPs improves Vim-Ti with $1.5$G FLOPs by a large margin of $5.6\%$ accuracy on ImageNet. Code is available at: \url{https://github.com/TerryPei/EfficientVMamba}.


Active Generation for Image Classification

arXiv.org Artificial Intelligence

Recently, the growing capabilities of deep generative models have underscored their potential in enhancing image classification accuracy. However, existing methods often demand the generation of a disproportionately large number of images compared to the original dataset, while having only marginal improvements in accuracy. This computationally expensive and time-consuming process hampers the practicality of such approaches. In this paper, we propose to address the efficiency of image generation by focusing on the specific needs and characteristics of the model. With a central tenet of active learning, our method, named ActGen, takes a training-aware approach to image generation. It aims to create images akin to the challenging or misclassified samples encountered by the current model and incorporates these generated images into the training set to augment model performance. ActGen introduces an attentive image guidance technique, using real images as guides during the denoising process of a diffusion model. The model's attention on class prompt is leveraged to ensure the preservation of similar foreground object while diversifying the background. Furthermore, we introduce a gradient-based generation guidance method, which employs two losses to generate more challenging samples and prevent the generated images from being too similar to previously generated ones. Experimental results on the CIFAR and ImageNet datasets demonstrate that our method achieves better performance with a significantly reduced number of generated images.


Accelerated Cloud for Artificial Intelligence (ACAI)

arXiv.org Artificial Intelligence

Training an effective Machine learning (ML) model is an iterative process that requires effort in multiple dimensions. Vertically, a single pipeline typically includes an initial ETL (Extract, Transform, Load) of raw datasets, a model training stage, and an evaluation stage where the practitioners obtain statistics of the model performance. Horizontally, many such pipelines may be required to find the best model within a search space of model configurations. Many practitioners resort to maintaining logs manually and writing simple glue code to automate the workflow. However, carrying out this process on the cloud is not a trivial task in terms of resource provisioning, data management, and bookkeeping of job histories to make sure the results are reproducible. We propose an end-to-end cloud-based machine learning platform, Accelerated Cloud for AI (ACAI), to help improve the productivity of ML practitioners. ACAI achieves this goal by enabling cloud-based storage of indexed, labeled, and searchable data, as well as automatic resource provisioning, job scheduling, and experiment tracking. Specifically, ACAI provides practitioners (1) a data lake for storing versioned datasets and their corresponding metadata, and (2) an execution engine for executing ML jobs on the cloud with automatic resource provisioning (auto-provision), logging and provenance tracking. To evaluate ACAI, we test the efficacy of our auto-provisioner on the MNIST handwritten digit classification task, and we study the usability of our system using experiments and interviews. We show that our auto-provisioner produces a 1.7x speed-up and 39% cost reduction, and our system reduces experiment time for ML scientists by 20% on typical ML use cases.


Visual Imitation Learning with Calibrated Contrastive Representation

arXiv.org Artificial Intelligence

Adversarial Imitation Learning (AIL) allows the agent to reproduce expert behavior with low-dimensional states and actions. However, challenges arise in handling visual states due to their less distinguishable representation compared to low-dimensional proprioceptive features. While existing methods resort to adopt complex network architectures or separate the process of learning representation and decision-making, they overlook valuable intra-agent information within demonstrations. To address this problem, this paper proposes a simple and effective solution by incorporating calibrated contrastive representative learning into visual AIL framework. Specifically, we present an image encoder in visual AIL, utilizing a combination of unsupervised and supervised contrastive learning to extract valuable features from visual states. Based on the fact that the improved agent often produces demonstrations of varying quality, we propose to calibrate the contrastive loss by treating each agent demonstrations as a mixed sample. The incorporation of contrastive learning can be jointly optimized with the AIL framework, without modifying the architecture or incurring significant computational costs. Experimental results on DMControl Suite demonstrate our proposed method is sample efficient and can outperform other compared methods from different aspects.