Goto

Collaborating Authors

 Xu, Can


Large Margin Discriminant Dimensionality Reduction in Prediction Space

Neural Information Processing Systems

In this paper we establish a duality between boosting and SVM, and use this to derive a novel discriminant dimensionality reduction algorithm. In particular, using the multiclass formulation of boosting and SVM we note that both use a combination of mapping and linear classification to maximize the multiclass margin. In SVM this is implemented using a predefined mapping (induced by the kernel) and optimizing the linear classifiers. In boosting the linear classifiers are predefined and the mapping (predictor) is learned through a combination of weak learners. We argue that the intermediate mapping, i.e. boosting predictor, is preserving the discriminant aspects of the data and that by controlling the dimension of this mapping it is possible to obtain discriminant low dimensional representations for the data. We use the aforementioned duality and propose a new method, Large Margin Discriminant Dimensionality Reduction (LADDER) that jointly learns the mapping and the linear classifiers in an efficient manner. This leads to a data-driven mapping which can embed data into any number of dimensions. Experimental results show that this embedding can significantly improve performance on tasks such as hashing and image/scene classification.


Visual Sentiment Prediction with Deep Convolutional Neural Networks

arXiv.org Machine Learning

Images have become one of the most popular types of media through which users convey their emotions within online social networks. Although vast amount of research is devoted to sentiment analysis of textual data, there has been very limited work that focuses on analyzing sentiment of image data. In this work, we propose a novel visual sentiment prediction framework that performs image understanding with Deep Convolutional Neural Networks (CNN). Specifically, the proposed sentiment prediction framework performs transfer learning from a CNN with millions of parameters, which is pre-trained on large-scale data for object recognition. Experiments conducted on two real-world datasets from Twitter and Tumblr demonstrate the effectiveness of the proposed visual sentiment analysis framework.