Goto

Collaborating Authors

 Xu, Can


WizardLM: Empowering Large Language Models to Follow Complex Instructions

arXiv.org Artificial Intelligence

Training large language models (LLMs) with open-domain instruction following data brings colossal success. However, manually creating such instruction data is very time-consuming and labor-intensive. Moreover, humans may struggle to produce high-complexity instructions. In this paper, we show an avenue for creating large amounts of instruction data with varying levels of complexity using LLM instead of humans. Starting with an initial set of instructions, we use our proposed Evol-Instruct to rewrite them step by step into more complex instructions. Then, we mix all generated instruction data to fine-tune LLaMA. We call the resulting model WizardLM. Human evaluations on a complexity-balanced test bed and Vicuna's testset show that instructions from Evol-Instruct are superior to human-created ones. By analyzing the human evaluation results of the high complexity part, we demonstrate that outputs from our WizardLM are preferred to outputs from OpenAI ChatGPT. In GPT-4 automatic evaluation, WizardLM achieves more than 90\% capacity of ChatGPT on 17 out of 29 skills. Even though WizardLM still lags behind ChatGPT in some aspects, our findings suggest that fine-tuning with AI-evolved instructions is a promising direction for enhancing LLMs. Our code and data are public at https://github.com/nlpxucan/WizardLM


UnifieR: A Unified Retriever for Large-Scale Retrieval

arXiv.org Artificial Intelligence

Large-scale retrieval is to recall relevant documents from a huge collection given a query. It relies on representation learning to embed documents and queries into a common semantic encoding space. According to the encoding space, recent retrieval methods based on pre-trained language models (PLM) can be coarsely categorized into either dense-vector or lexicon-based paradigms. These two paradigms unveil the PLMs' representation capability in different granularities, i.e., global sequence-level compression and local word-level contexts, respectively. Inspired by their complementary global-local contextualization and distinct representing views, we propose a new learning framework, UnifieR which unifies dense-vector and lexicon-based retrieval in one model with a dual-representing capability. Experiments on passage retrieval benchmarks verify its effectiveness in both paradigms. A uni-retrieval scheme is further presented with even better retrieval quality. We lastly evaluate the model on BEIR benchmark to verify its transferability.


Augmented Large Language Models with Parametric Knowledge Guiding

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have significantly advanced natural language processing (NLP) with their impressive language understanding and generation capabilities. However, their performance may be suboptimal for domain-specific tasks that require specialized knowledge due to limited exposure to the related data. Additionally, the lack of transparency of most state-of-the-art (SOTA) LLMs, which can only be accessed via APIs, impedes further fine-tuning with domain custom data. Moreover, providing private data to the LLMs' owner leads to data privacy problems. To address these challenges, we propose the novel Parametric Knowledge Guiding (PKG) framework, which equips LLMs with a knowledge-guiding module to access relevant knowledge without altering the LLMs' parameters. Our PKG is based on open-source "white-box" language models, allowing offline memory of any knowledge that LLMs require. We demonstrate that our PKG framework can enhance the performance of "black-box" LLMs on a range of domain knowledge-intensive tasks that require factual (+7.9%), tabular (+11.9%),


Latent User Intent Modeling for Sequential Recommenders

arXiv.org Artificial Intelligence

Sequential recommender models are essential components of modern industrial recommender systems. These models learn to predict the next items a user is likely to interact with based on his/her interaction history on the platform. Most sequential recommenders however lack a higher-level understanding of user intents, which often drive user behaviors online. Intent modeling is thus critical for understanding users and optimizing long-term user experience. We propose a probabilistic modeling approach and formulate user intent as latent variables, which are inferred based on user behavior signals using variational autoencoders (VAE). The recommendation policy is then adjusted accordingly given the inferred user intent. We demonstrate the effectiveness of the latent user intent modeling via offline analyses as well as live experiments on a large-scale industrial recommendation platform.


LED: Lexicon-Enlightened Dense Retriever for Large-Scale Retrieval

arXiv.org Artificial Intelligence

Retrieval models based on dense representations in semantic space have become an indispensable branch for first-stage retrieval. These retrievers benefit from surging advances in representation learning towards compressive global sequence-level embeddings. However, they are prone to overlook local salient phrases and entity mentions in texts, which usually play pivot roles in first-stage retrieval. To mitigate this weakness, we propose to make a dense retriever align a well-performing lexicon-aware representation model. The alignment is achieved by weakened knowledge distillations to enlighten the retriever via two aspects -- 1) a lexicon-augmented contrastive objective to challenge the dense encoder and 2) a pair-wise rank-consistent regularization to make dense model's behavior incline to the other. We evaluate our model on three public benchmarks, which shows that with a comparable lexicon-aware retriever as the teacher, our proposed dense one can bring consistent and significant improvements, and even outdo its teacher. In addition, we found our improvement on the dense retriever is complementary to the standard ranker distillation, which can further lift state-of-the-art performance.


KnowDA: All-in-One Knowledge Mixture Model for Data Augmentation in Low-Resource NLP

arXiv.org Artificial Intelligence

This paper focuses on the data augmentation for low-resource NLP tasks where the training set is limited. The existing solutions either leverage task-independent heuristic rules (e.g., Synonym Replacement) or fine-tune general-purpose pre-trained language models (e.g., GPT2) using the limited training instances to produce new synthetic data. Consequently, they have trivial task-specific knowledge and are limited to yielding low-quality synthetic data. To combat this issue, we propose Knowledge Mixture Data Augmentation Model (KnowDA) which is an Seq2Seq language model pre-trained on a mixture of diverse NLP tasks under a novel framework of Knowledge Mixture Training (KoMT). The goal of KoMT is to condense diverse NLP task-specific knowledge into the single KnowDA model (i.e., all-in-one) such that KnowDA could utilize these knowledge to quickly grasp the inherent synthesis law of the target task through limited training instances. Specifically, KoMT reformulates input examples from various heterogeneous NLP tasks into a unified text-to-text format, and employs denoising training objectives in different granularity to learn to reconstruct partial or complete samples. To the best of our knowledge, we are the first attempt to apply 100+ NLP multi-task training for data augmentation. Extensive experiments show that i) the synthetic data produced by KnowDA successfully improves performance of the strong pre-trained language models (i.e., Bert, ALBert and Deberta) by a large margin on the low-resource NLP benchmark FewGLUE, CoNLL'03 and WikiAnn; ii) KnowDA successfully transfers the task knowledge to NLP tasks whose types are seen and unseen in KoMT.


MMDialog: A Large-scale Multi-turn Dialogue Dataset Towards Multi-modal Open-domain Conversation

arXiv.org Artificial Intelligence

Responding with multi-modal content has been recognized as an essential capability for an intelligent conversational agent. In this paper, we introduce the MMDialog dataset to better facilitate multi-modal conversation. MMDialog is composed of a curated set of 1.08 million real-world dialogues with 1.53 million unique images across 4,184 topics. MMDialog has two main and unique advantages. First, it is the largest multi-modal conversation dataset by the number of dialogues by 88x. Second, it contains massive topics to generalize the open-domain. To build engaging dialogue system with this dataset, we propose and normalize two response producing tasks based on retrieval and generative scenarios. In addition, we build two baselines for above tasks with state-of-the-art techniques and report their experimental performance. We also propose a novel evaluation metric MM-Relevance to measure the multi-modal responses. Our dataset and scripts are available in https://github.com/victorsungo/MMDialog.


Fine-Grained Distillation for Long Document Retrieval

arXiv.org Artificial Intelligence

Long document retrieval aims to fetch query-relevant documents from a large-scale collection, where knowledge distillation has become de facto to improve a retriever by mimicking a heterogeneous yet powerful cross-encoder. However, in contrast to passages or sentences, retrieval on long documents suffers from the scope hypothesis that a long document may cover multiple topics. This maximizes their structure heterogeneity and poses a granular-mismatch issue, leading to an inferior distillation efficacy. In this work, we propose a new learning framework, fine-grained distillation (FGD), for long-document retrievers. While preserving the conventional dense retrieval paradigm, it first produces global-consistent representations crossing different fine granularity and then applies multi-granular aligned distillation merely during training. In experiments, we evaluate our framework on two long-document retrieval benchmarks, which show state-of-the-art performance.


Adam: Dense Retrieval Distillation with Adaptive Dark Examples

arXiv.org Artificial Intelligence

To improve the performance of the dual-encoder retriever, one effective approach is knowledge distillation from the cross-encoder ranker. Existing works construct the candidate passages following the supervised learning setting where a query is paired with a positive passage and a batch of negatives. However, through empirical observation, we find that even the hard negatives from advanced methods are still too trivial for the teacher to distinguish, preventing the teacher from transferring abundant dark knowledge to the student through its soft label. To alleviate this issue, we propose ADAM, a knowledge distillation framework that can better transfer the dark knowledge held in the teacher with Adaptive Dark exAMples. Different from previous works that only rely on one positive and hard negatives as candidate passages, we create dark examples that all have moderate relevance to the query through mixing-up and masking in discrete space. Furthermore, as the quality of knowledge held in different training instances varies as measured by the teacher's confidence score, we propose a self-paced distillation strategy that adaptively concentrates on a subset of high-quality instances to conduct our dark-example-based knowledge distillation to help the student learn better. We conduct experiments on two widely-used benchmarks and verify the effectiveness of our method.


PCL: Peer-Contrastive Learning with Diverse Augmentations for Unsupervised Sentence Embeddings

arXiv.org Artificial Intelligence

Learning sentence embeddings in an unsupervised manner is fundamental in natural language processing. Recent common practice is to couple pre-trained language models with unsupervised contrastive learning, whose success relies on augmenting a sentence with a semantically-close positive instance to construct contrastive pairs. Nonetheless, existing approaches usually depend on a mono-augmenting strategy, which causes learning shortcuts towards the augmenting biases and thus corrupts the quality of sentence embeddings. A straightforward solution is resorting to more diverse positives from a multi-augmenting strategy, while an open question remains about how to unsupervisedly learn from the diverse positives but with uneven augmenting qualities in the text field. As one answer, we propose a novel Peer-Contrastive Learning (PCL) with diverse augmentations. PCL constructs diverse contrastive positives and negatives at the group level for unsupervised sentence embeddings. PCL performs peer-positive contrast as well as peer-network cooperation, which offers an inherent anti-bias ability and an effective way to learn from diverse augmentations. Experiments on STS benchmarks verify the effectiveness of PCL against its competitors in unsupervised sentence embeddings.