Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Xiyu Zhai
How Many Samples are Needed to Estimate a Convolutional Neural Network?
Simon S. Du, Yining Wang, Xiyu Zhai, Sivaraman Balakrishnan, Russ R. Salakhutdinov, Aarti Singh
A widespread folklore for explaining the success of Convolutional Neural Networks (CNNs) is that CNNs use a more compact representation than the Fullyconnected Neural Network (FNN) and thus require fewer training samples to accurately estimate their parameters. We initiate the study of rigorously characterizing the sample complexity of estimating CNNs.