Plotting

 Xing, Xin


Dynamic Image for 3D MRI Image Alzheimer's Disease Classification

arXiv.org Artificial Intelligence

We propose to apply a 2D CNN architecture to 3D MRI image Alzheimer's disease classification. Training a 3D convolutional neural network (CNN) is time-consuming and computationally expensive. We make use of approximate rank pooling to transform the 3D MRI image volume into a 2D image to use as input to a 2D CNN. We show our proposed CNN model achieves $9.5\%$ better Alzheimer's disease classification accuracy than the baseline 3D models. We also show that our method allows for efficient training, requiring only 20% of the training time compared to 3D CNN models. The code is available online: https://github.com/UkyVision/alzheimer-project.


Neural Gaussian Mirror for Controlled Feature Selection in Neural Networks

arXiv.org Machine Learning

Deep neural networks (DNNs) have become increasingly popular and achieved outstanding performance in predictive tasks. However, the DNN framework itself cannot inform the user which features are more or less relevant for making the prediction, which limits its applicability in many scientific fields. We introduce neural Gaussian mirrors (NGMs), in which mirrored features are created, via a structured perturbation based on a kernel-based conditional dependence measure, to help evaluate feature importance. We design two modifications of the DNN architecture for incorporating mirrored features and providing mirror statistics to measure feature importance. As shown in simulated and real data examples, the proposed method controls the feature selection error rate at a predefined level and maintains a high selection power even with the presence of highly correlated features.


Deep Spatio-Temporal Neural Networks for Click-Through Rate Prediction

arXiv.org Machine Learning

Click-through rate (CTR) prediction is a critical task in online advertising systems. A large body of research considers each ad independently, but ignores its relationship to other ads that may impact the CTR. In this paper, we investigate various types of auxiliary ads for improving the CTR prediction of the target ad. In particular, we explore auxiliary ads from two viewpoints: one is from the spatial domain, where we consider the contextual ads shown above the target ad on the same page; the other is from the temporal domain, where we consider historically clicked and unclicked ads of the user. The intuitions are that ads shown together may influence each other, clicked ads reflect a user's preferences, and unclicked ads may indicate what a user dislikes to certain extent. In order to effectively utilize these auxiliary data, we propose the Deep Spatio-Temporal neural Networks (DSTNs) for CTR prediction. Our model is able to learn the interactions between each type of auxiliary data and the target ad, to emphasize more important hidden information, and to fuse heterogeneous data in a unified framework. Offline experiments on one public dataset and two industrial datasets show that DSTNs outperform several state-of-the-art methods for CTR prediction. We have deployed the best-performing DSTN in Shenma Search, which is the second largest search engine in China. The A/B test results show that the online CTR is also significantly improved compared to our last serving model.