Goto

Collaborating Authors

 Xing, Guoliang


Miriam: Exploiting Elastic Kernels for Real-time Multi-DNN Inference on Edge GPU

arXiv.org Artificial Intelligence

Many applications such as autonomous driving and augmented reality, require the concurrent running of multiple deep neural networks (DNN) that poses different levels of real-time performance requirements. However, coordinating multiple DNN tasks with varying levels of criticality on edge GPUs remains an area of limited study. Unlike server-level GPUs, edge GPUs are resource-limited and lack hardware-level resource management mechanisms for avoiding resource contention. Therefore, we propose Miriam, a contention-aware task coordination framework for multi-DNN inference on edge GPU. Miriam consolidates two main components, an elastic-kernel generator, and a runtime dynamic kernel coordinator, to support mixed critical DNN inference. To evaluate Miriam, we build a new DNN inference benchmark based on CUDA with diverse representative DNN workloads. Experiments on two edge GPU platforms show that Miriam can increase system throughput by 92% while only incurring less than 10\% latency overhead for critical tasks, compared to state of art baselines.


Interpersonal Distance Tracking with mmWave Radar and IMUs

arXiv.org Artificial Intelligence

Tracking interpersonal distances is essential for real-time social distancing management and {\em ex-post} contact tracing to prevent spreads of contagious diseases. Bluetooth neighbor discovery has been employed for such purposes in combating COVID-19, but does not provide satisfactory spatiotemporal resolutions. This paper presents ImmTrack, a system that uses a millimeter wave radar and exploits the inertial measurement data from user-carried smartphones or wearables to track interpersonal distances. By matching the movement traces reconstructed from the radar and inertial data, the pseudo identities of the inertial data can be transferred to the radar sensing results in the global coordinate system. The re-identified, radar-sensed movement trajectories are then used to track interpersonal distances. In a broader sense, ImmTrack is the first system that fuses data from millimeter wave radar and inertial measurement units for simultaneous user tracking and re-identification. Evaluation with up to 27 people in various indoor/outdoor environments shows ImmTrack's decimeters-seconds spatiotemporal accuracy in contact tracing, which is similar to that of the privacy-intrusive camera surveillance and significantly outperforms the Bluetooth neighbor discovery approach.