Xing, Eric
On Data Efficiency of Meta-learning
Al-Shedivat, Maruan, Li, Liam, Xing, Eric, Talwalkar, Ameet
Meta-learning has enabled learning statistical models that can be quickly adapted to new prediction tasks. Motivated by use-cases in personalized federated learning, we study the often overlooked aspect of the modern meta-learning algorithms -- their data efficiency. To shed more light on which methods are more efficient, we use techniques from algorithmic stability to derive bounds on the transfer risk that have important practical implications, indicating how much supervision is needed and how it must be allocated for each method to attain the desired level of generalization. Further, we introduce a new simple framework for evaluating meta-learning methods under a limit on the available supervision, conduct an empirical study of MAML, Reptile, and Protonets, and demonstrate the differences in the behavior of these methods on few-shot and federated learning benchmarks. Finally, we propose active meta-learning, which incorporates active data selection into learning-to-learn, leading to better performance of all methods in the limited supervision regime.
Interactive Weak Supervision: Learning Useful Heuristics for Data Labeling
Boecking, Benedikt, Neiswanger, Willie, Xing, Eric, Dubrawski, Artur
Obtaining large annotated datasets is critical for training successful machine learning models and it is often a bottleneck in practice. Weak supervision offers a promising alternative for producing labeled datasets without ground truth annotations by generating probabilistic labels using multiple noisy heuristics. This process can scale to large datasets and has demonstrated state of the art performance in diverse domains such as healthcare and e-commerce. One practical issue with learning from user-generated heuristics is that their creation requires creativity, foresight, and domain expertise from those who handcraft them, a process which can be tedious and subjective. We develop the first framework for interactive weak supervision in which a method proposes heuristics and learns from user feedback given on each proposed heuristic. Our experiments demonstrate that only a small number of feedback iterations are needed to train models that achieve highly competitive test set performance without access to ground truth training labels. We conduct user studies, which show that users are able to effectively provide feedback on heuristics and that test set results track the performance of simulated oracles. The performance of supervised machine learning (ML) hinges on the availability of labeled data in sufficient quantity and quality. However, labeled data for applications of ML can be scarce, and the common process of obtaining labels by having annotators inspect individual samples is often expensive and time consuming. Additionally, this cost is frequently exacerbated by factors such as privacy concerns, required expert knowledge, and shifting problem definitions. Weak supervision provides a promising alternative, reducing the need for humans to hand label large datasets to train ML models (Riedel et al., 2010; Hoffmann et al., 2011; Ratner et al., 2016; Dehghani et al., 2018). A recent approach called data programming (Ratner et al., 2016) combines multiple weak supervision sources by using an unsupervised label model to estimate the latent true class label, an idea that has close connections to modeling workers in crowd-sourcing (Dawid & Skene, 1979; Karger et al., 2011; Dalvi et al., 2013; Zhang et al., 2014).
Federated Learning via Posterior Averaging: A New Perspective and Practical Algorithms
Al-Shedivat, Maruan, Gillenwater, Jennifer, Xing, Eric, Rostamizadeh, Afshin
Federated learning is typically approached as an optimization problem, where the goal is to minimize a global loss function by distributing computation across client devices that possess local data and specify different parts of the global objective. We present an alternative perspective and formulate federated learning as a posterior inference problem, where the goal is to infer a global posterior distribution by having client devices each infer the posterior of their local data. While exact inference is often intractable, this perspective provides a principled way to search for global optima in federated settings. Further, starting with the analysis of federated quadratic objectives, we develop a computation- and communication-efficient approximate posterior inference algorithm -- federated posterior averaging (FedPA). Our algorithm uses MCMC for approximate inference of local posteriors on the clients and efficiently communicates their statistics to the server, where the latter uses them to refine a global estimate of the posterior mode. Finally, we show that FedPA generalizes federated averaging (FedAvg), can similarly benefit from adaptive optimizers, and yields state-of-the-art results on four realistic and challenging benchmarks, converging faster, to better optima.
Efficient Exploration via State Marginal Matching
Lee, Lisa, Eysenbach, Benjamin, Parisotto, Emilio, Xing, Eric, Levine, Sergey, Salakhutdinov, Ruslan
To solve tasks with sparse rewards, reinforcement learning algorithms must be equipped with suitable exploration techniques. However, it is unclear what underlying objective is being optimized by existing exploration algorithms, or how they can be altered to incorporate prior knowledge about the task. Most importantly, it is difficult to use exploration experience from one task to acquire exploration strategies for another task. We address these shortcomings by learning a single exploration policy that can quickly solve a suite of downstream tasks in a multi-task setting, amortizing the cost of learning to explore. We recast exploration as a problem of State Marginal Matching (SMM): we learn a mixture of policies for which the state marginal distribution matches a given target state distribution, which can incorporate prior knowledge about the task. Without any prior knowledge, the SMM objective reduces to maximizing the marginal state entropy. We optimize the objective by reducing it to a two-player, zero-sum game, where we iteratively fit a state density model and then update the policy to visit states with low density under this model. While many previous algorithms for exploration employ a similar procedure, they omit a crucial historical averaging step, without which the iterative procedure does not converge to a Nash equilibria. To parallelize exploration, we extend our algorithm to use mixtures of policies, wherein we discover connections between SMM and previously-proposed skill learning methods based on mutual information. On complex navigation and manipulation tasks, we demonstrate that our algorithm explores faster and adapts more quickly to new tasks.
Regularizing Black-box Models for Improved Interpretability (HILL 2019 Version)
Plumb, Gregory, Al-Shedivat, Maruan, Xing, Eric, Talwalkar, Ameet
Most of the work on interpretable machine learning has focused on designing either inherently interpretable models, which typically trade-off accuracy for interpretability, or post-hoc explanation systems, which lack guarantees about their explanation quality. We propose an alternative to these approaches by directly regularizing a black-box model for interpretability at training time. Our approach explicitly connects three key aspects of interpretable machine learning: (i) the model's innate explainability, (ii) the explanation system used at test time, and (iii) the metrics that measure explanation quality. Our regularization results in substantial improvement in terms of the explanation fidelity and stability metrics across a range of datasets and black-box explanation systems while slightly improving accuracy. Further, if the resulting model is still not sufficiently interpretable, the weight of the regularization term can be adjusted to achieve the desired trade-off between accuracy and interpretability. Finally, we justify theoretically that the benefits of explanation-based regularization generalize to unseen points.
SysML: The New Frontier of Machine Learning Systems
Ratner, Alexander, Alistarh, Dan, Alonso, Gustavo, Andersen, David G., Bailis, Peter, Bird, Sarah, Carlini, Nicholas, Catanzaro, Bryan, Chayes, Jennifer, Chung, Eric, Dally, Bill, Dean, Jeff, Dhillon, Inderjit S., Dimakis, Alexandros, Dubey, Pradeep, Elkan, Charles, Fursin, Grigori, Ganger, Gregory R., Getoor, Lise, Gibbons, Phillip B., Gibson, Garth A., Gonzalez, Joseph E., Gottschlich, Justin, Han, Song, Hazelwood, Kim, Huang, Furong, Jaggi, Martin, Jamieson, Kevin, Jordan, Michael I., Joshi, Gauri, Khalaf, Rania, Knight, Jason, Konečný, Jakub, Kraska, Tim, Kumar, Arun, Kyrillidis, Anastasios, Lakshmiratan, Aparna, Li, Jing, Madden, Samuel, McMahan, H. Brendan, Meijer, Erik, Mitliagkas, Ioannis, Monga, Rajat, Murray, Derek, Olukotun, Kunle, Papailiopoulos, Dimitris, Pekhimenko, Gennady, Rekatsinas, Theodoros, Rostamizadeh, Afshin, Ré, Christopher, De Sa, Christopher, Sedghi, Hanie, Sen, Siddhartha, Smith, Virginia, Smola, Alex, Song, Dawn, Sparks, Evan, Stoica, Ion, Sze, Vivienne, Udell, Madeleine, Vanschoren, Joaquin, Venkataraman, Shivaram, Vinayak, Rashmi, Weimer, Markus, Wilson, Andrew Gordon, Xing, Eric, Zaharia, Matei, Zhang, Ce, Talwalkar, Ameet
Machine learning (ML) techniques are enjoying rapidly increasing adoption. However, designing and implementing the systems that support ML models in real-world deployments remains a significant obstacle, in large part due to the radically different development and deployment profile of modern ML methods, and the range of practical concerns that come with broader adoption. We propose to foster a new systems machine learning research community at the intersection of the traditional systems and ML communities, focused on topics such as hardware systems for ML, software systems for ML, and ML optimized for metrics beyond predictive accuracy. To do this, we describe a new conference, SysML, that explicitly targets research at the intersection of systems and machine learning with a program committee split evenly between experts in systems and ML, and an explicit focus on topics at the intersection of the two.
Explaining a black-box using Deep Variational Information Bottleneck Approach
Bang, Seojin, Xie, Pengtao, Wu, Wei, Xing, Eric
Briefness and comprehensiveness are necessary in order to give a lot of information concisely in explaining a black-box decision system. However, existing interpretable machine learning methods fail to consider briefness and comprehensiveness simultaneously, which may lead to redundant explanations. We propose a system-agnostic interpretable method that provides a brief but comprehensive explanation by adopting the inspiring information theoretic principle, information bottleneck principle. Using an information theoretic objective, VIBI selects instance-wise key features that are maximally compressed about an input (briefness), and informative about a decision made by a black-box on that input (comprehensive). The selected key features act as an information bottleneck that serves as a concise explanation for each black-box decision. We show that VIBI outperforms other interpretable machine learning methods in terms of both interpretability and fidelity evaluated by human and quantitative metrics.
Regularizing Black-box Models for Improved Interpretability
Plumb, Gregory, Al-Shedivat, Maruan, Xing, Eric, Talwalkar, Ameet
Most work on interpretability in machine learning hasfocused on designing either inherently interpretable models, that typically tradeoff interpretability foraccuracy, or post-hoc explanation systems, that lack guarantees about their explanation quality.We propose an alternative to these approaches by directly regularizing a black-box model for interpretability at training time. Our approach explicitlyconnects three key aspects of interpretable machinelearning: the model's innate explainability, the explanation system used at test time, and the metrics that measure explanation quality. Our regularization results in substantial (up to orders of magnitude) improvement in terms of explanation fidelity and stability metrics across a range of datasets, models, and black-box explanation systems.Remarkably, our regularizers also slightly improve predictive accuracy on average across the nine datasets we consider. Further, we show that the benefits of our novel regularizers on explanation quality provably generalize to unseen test points.
Toward Unsupervised Text Content Manipulation
Wang, Wentao, Hu, Zhiting, Yang, Zichao, Shi, Haoran, Xu, Frank, Xing, Eric
Controlled generation of text is of high practical use. Recent efforts have made impressive progress in generating or editing sentences with given textual attributes (e.g., sentiment). This work studies a new practical setting of text content manipulation. Given a structured record, such as `(PLAYER: Lebron, POINTS: 20, ASSISTS: 10)', and a reference sentence, such as `Kobe easily dropped 30 points', we aim to generate a sentence that accurately describes the full content in the record, with the same writing style (e.g., wording, transitions) of the reference. The problem is unsupervised due to lack of parallel data in practice, and is challenging to minimally yet effectively manipulate the text (by rewriting/adding/deleting text portions) to ensure fidelity to the structured content. We derive a dataset from a basketball game report corpus as our testbed, and develop a neural method with unsupervised competing objectives and explicit content coverage constraints. Automatic and human evaluations show superiority of our approach over competitive methods including a strong rule-based baseline and prior approaches designed for style transfer.
ProBO: a Framework for Using Probabilistic Programming in Bayesian Optimization
Neiswanger, Willie, Kandasamy, Kirthevasan, Poczos, Barnabas, Schneider, Jeff, Xing, Eric
Optimizing an expensive-to-query function is a common task in science and engineering, where it is beneficial to keep the number of queries to a minimum. A popular strategy is Bayesian optimization (BO), which leverages probabilistic models for this task. Most BO today uses Gaussian processes (GPs), or a few other surrogate models. However, there is a broad set of Bayesian modeling techniques that we may want to use to capture complex systems and reduce the number of queries. Probabilistic programs (PPs) are modern tools that allow for flexible model composition, incorporation of prior information, and automatic inference. In this paper, we develop ProBO, a framework for BO using only standard operations common to most PPs. This allows a user to drop in an arbitrary PP implementation and use it directly in BO. To do this, we describe black box versions of popular acquisition functions that can be used in our framework automatically, without model-specific derivation, and show how to optimize these functions. We also introduce a model, which we term the Bayesian Product of Experts, that integrates into ProBO and can be used to combine information from multiple models implemented with different PPs. We show empirical results using multiple PP implementations, and compare against standard BO methods.