Plotting

 Xing, Eric


Asymptotically Exact, Embarrassingly Parallel MCMC

arXiv.org Machine Learning

Communication costs, resulting from synchronization requirements during learning, can greatly slow down many parallel machine learning algorithms. In this paper, we present a parallel Markov chain Monte Carlo (MCMC) algorithm in which subsets of data are processed independently, with very little communication. First, we arbitrarily partition data onto multiple machines. Then, on each machine, any classical MCMC method (e.g., Gibbs sampling) may be used to draw samples from a posterior distribution given the data subset. Finally, the samples from each machine are combined to form samples from the full posterior. This embarrassingly parallel algorithm allows each machine to act independently on a subset of the data (without communication) until the final combination stage. We prove that our algorithm generates asymptotically exact samples and empirically demonstrate its ability to parallelize burn-in and sampling in several models.


Fast Distribution To Real Regression

arXiv.org Machine Learning

We study the problem of distribution to real-value regression, where one aims to regress a mapping $f$ that takes in a distribution input covariate $P\in \mathcal{I}$ (for a non-parametric family of distributions $\mathcal{I}$) and outputs a real-valued response $Y=f(P) + \epsilon$. This setting was recently studied, and a "Kernel-Kernel" estimator was introduced and shown to have a polynomial rate of convergence. However, evaluating a new prediction with the Kernel-Kernel estimator scales as $\Omega(N)$. This causes the difficult situation where a large amount of data may be necessary for a low estimation risk, but the computation cost of estimation becomes infeasible when the data-set is too large. To this end, we propose the Double-Basis estimator, which looks to alleviate this big data problem in two ways: first, the Double-Basis estimator is shown to have a computation complexity that is independent of the number of of instances $N$ when evaluating new predictions after training; secondly, the Double-Basis estimator is shown to have a fast rate of convergence for a general class of mappings $f\in\mathcal{F}$.


Nonparametric Latent Tree Graphical Models: Inference, Estimation, and Structure Learning

arXiv.org Machine Learning

Tree structured graphical models are powerful at expressing long range or hierarchical dependency among many variables, and have been widely applied in different areas of computer science and statistics. However, existing methods for parameter estimation, inference, and structure learning mainly rely on the Gaussian or discrete assumptions, which are restrictive under many applications. In this paper, we propose new nonparametric methods based on reproducing kernel Hilbert space embeddings of distributions that can recover the latent tree structures, estimate the parameters, and perform inference for high dimensional continuous and non-Gaussian variables. The usefulness of the proposed methods are illustrated by thorough numerical results.


Group Sparse Additive Models

arXiv.org Machine Learning

We consider the problem of sparse variable selection in nonparametric additive models, with the prior knowledge of the structure among the covariates to encourage those variables within a group to be selected jointly. Previous works either study the group sparsity in the parametric setting (e.g., group lasso), or address the problem in the non-parametric setting without exploiting the structural information (e.g., sparse additive models). In this paper, we present a new method, called group sparse additive models (GroupSpAM), which can handle group sparsity in additive models. We generalize the l1/l2 norm to Hilbert spaces as the sparsity-inducing penalty in GroupSpAM. Moreover, we derive a novel thresholding condition for identifying the functional sparsity at the group level, and propose an efficient block coordinate descent algorithm for constructing the estimate. We demonstrate by simulation that GroupSpAM substantially outperforms the competing methods in terms of support recovery and prediction accuracy in additive models, and also conduct a comparative experiment on a real breast cancer dataset.


Discrete Temporal Models of Social Networks

arXiv.org Machine Learning

We propose a family of statistical models for social network evolution over time, which represents an extension of Exponential Random Graph Models (ERGMs). Many of the methods for ERGMs are readily adapted for these models, including maximum likelihood estimation algorithms. We discuss models of this type and their properties, and give examples, as well as a demonstration of their use for hypothesis testing and classification. We believe our temporal ERG models represent a useful new framework for modeling time-evolving social networks, and rewiring networks from other domains such as gene regulation circuitry, and communication networks.