Goto

Collaborating Authors

 Xing, Chen


Adaptive Cross-Modal Few-Shot Learning

arXiv.org Machine Learning

Metric-based meta-learning techniques have successfully been applied to few-shot classification problems. However, leveraging cross-modal information in a few-shot setting has yet to be explored. When the support from visual information is limited in few-shot image classification, semantic representatins (learned from unsupervised text corpora) can provide strong prior knowledge and context to help learning. Based on this intuition, we design a model that is able to leverage visual and semantic features in the context of few-shot classification. We propose an adaptive mechanism that is able to effectively combine both modalities conditioned on categories. Through a series of experiments, we show that our method boosts the performance of metric-based approaches by effectively exploiting language structure. Using this extra modality, our model bypass current unimodal state-of-the-art methods by a large margin on two important benchmarks: mini-ImageNet and tiered-ImageNet. The improvement in performance is particularly large when the number of shots are small.


A Walk with SGD

arXiv.org Machine Learning

Exploring why stochastic gradient descent (SGD) based optimization methods train deep neural networks (DNNs) that generalize well has become an active area of research. Towards this end, we empirically study the dynamics of SGD when training over-parametrized DNNs. Specifically we study the DNN loss surface along the trajectory of SGD by interpolating the loss surface between parameters from consecutive \textit{iterations} and tracking various metrics during training. We find that the loss interpolation between parameters before and after a training update is roughly convex with a minimum (\textit{valley floor}) in between for most of the training. Based on this and other metrics, we deduce that during most of the training, SGD explores regions in a valley by bouncing off valley walls at a height above the valley floor. This 'bouncing off walls at a height' mechanism helps SGD traverse larger distance for small batch sizes and large learning rates which we find play qualitatively different roles in the dynamics. While a large learning rate maintains a large height from the valley floor, a small batch size injects noise facilitating exploration. We find this mechanism is crucial for generalization because the valley floor has barriers and this exploration above the valley floor allows SGD to quickly travel far away from the initialization point (without being affected by barriers) and find flatter regions, corresponding to better generalization.


Hierarchical Recurrent Attention Network for Response Generation

AAAI Conferences

We study multi-turn response generation in chatbots where a response is generated according to a conversation context. Existing work has modeled the hierarchy of the context, but does not pay enough attention to the fact that words and utterances in the context are differentially important. As a result, they may lose important information in context and generate irrelevant responses. We propose a hierarchical recurrent attention network (HRAN) to model both the hierarchy and the importance variance in a unified framework. In HRAN, a hierarchical attention mechanism attends to important parts within and among utterances with word level attention and utterance level attention respectively. Empirical studies on both automatic evaluation and human judgment show that HRAN can significantly outperform state-of-the-art models for context based response generation.


Topic Aware Neural Response Generation

AAAI Conferences

We consider incorporating topic information into a sequence-to-sequence framework to generate informative and interesting responses for chatbots. To this end, we propose a topic aware sequence-to-sequence (TA-Seq2Seq) model. The model utilizes topics to simulate prior human knowledge that guides them to form informative and interesting responses in conversation, and leverages topic information in generation by a joint attention mechanism and a biased generation probability. The joint attention mechanism summarizes the hidden vectors of an input message as context vectors by message attention and synthesizes topic vectors by topic attention from the topic words of the message obtained from a pre-trained LDA model, with these vectors jointly affecting the generation of words in decoding. To increase the possibility of topic words appearing in responses, the model modifies the generation probability of topic words by adding an extra probability item to bias the overall distribution. Empirical studies on both automatic evaluation metrics and human annotations show that TA-Seq2Seq can generate more informative and interesting responses, significantly outperforming state-of-the-art response generation models.


Hashtag-Based Sub-Event Discovery Using Mutually Generative LDA in Twitter

AAAI Conferences

Sub-event discovery is an effective method for social event analysis in Twitter. It can discover sub-events from large amount of noisy event-related information in Twitter and semantically represent them. The task is challenging because tweets are short, informal and noisy. To solve this problem, we consider leveraging event-related hashtags that contain many locations, dates and concise sub-event related descriptions to enhance sub-event discovery. To this end, we propose a hashtag-based mutually generative Latent Dirichlet Allocation model(MGe-LDA). In MGe-LDA, hashtags and topics of a tweet are mutually generated by each other. The mutually generative process models the relationship between hashtags and topics of tweets, and highlights the role of hashtags as a semantic representation of the corresponding tweets. Experimental results show that MGe-LDA can significantly outperform state-of-the-art methods for sub-event discovery.