Not enough data to create a plot.
Try a different view from the menu above.
Xie, Jiacheng
Time-resolved dynamic CBCT reconstruction using prior-model-free spatiotemporal Gaussian representation (PMF-STGR)
Xie, Jiacheng, Shao, Hua-Chieh, Zhang, You
Time-resolved CBCT imaging, which reconstructs a dynamic sequence of CBCTs reflecting intra-scan motion (one CBCT per x-ray projection without phase sorting or binning), is highly desired for regular and irregular motion characterization, patient setup, and motion-adapted radiotherapy. Representing patient anatomy and associated motion fields as 3D Gaussians, we developed a Gaussian representation-based framework (PMF-STGR) for fast and accurate dynamic CBCT reconstruction. PMF-STGR comprises three major components: a dense set of 3D Gaussians to reconstruct a reference-frame CBCT for the dynamic sequence; another 3D Gaussian set to capture three-level, coarse-to-fine motion-basis-components (MBCs) to model the intra-scan motion; and a CNN-based motion encoder to solve projection-specific temporal coefficients for the MBCs. Scaled by the temporal coefficients, the learned MBCs will combine into deformation vector fields to deform the reference CBCT into projection-specific, time-resolved CBCTs to capture the dynamic motion. Due to the strong representation power of 3D Gaussians, PMF-STGR can reconstruct dynamic CBCTs in a 'one-shot' training fashion from a standard 3D CBCT scan, without using any prior anatomical or motion model. We evaluated PMF-STGR using XCAT phantom simulations and real patient scans. Metrics including the image relative error, structural-similarity-index-measure, tumor center-of-mass-error, and landmark localization error were used to evaluate the accuracy of solved dynamic CBCTs and motion. PMF-STGR shows clear advantages over a state-of-the-art, INR-based approach, PMF-STINR. Compared with PMF-STINR, PMF-STGR reduces reconstruction time by 50% while reconstructing less blurred images with better motion accuracy. With improved efficiency and accuracy, PMF-STGR enhances the applicability of dynamic CBCT imaging for potential clinical translation.
E2CB2former: Effecitve and Explainable Transformer for CB2 Receptor Ligand Activity Prediction
Xie, Jiacheng, Ji, Yingrui, Zeng, Linghuan, Xiao, Xi, Chen, Gaofei, Zhu, Lijing, Mondal, Joyanta Jyoti, Chen, Jiansheng
Accurate prediction of CB2 receptor ligand activity is pivotal for advancing drug discovery targeting this receptor, which is implicated in inflammation, pain management, and neurodegenerative conditions. Although conventional machine learning and deep learning techniques have shown promise, their limited interpretability remains a significant barrier to rational drug design. In this work, we introduce CB2former, a framework that combines a Graph Convolutional Network with a Transformer architecture to predict CB2 receptor ligand activity. By leveraging the Transformer's self attention mechanism alongside the GCN's structural learning capability, CB2former not only enhances predictive performance but also offers insights into the molecular features underlying receptor activity. We benchmark CB2former against diverse baseline models including Random Forest, Support Vector Machine, K Nearest Neighbors, Gradient Boosting, Extreme Gradient Boosting, Multilayer Perceptron, Convolutional Neural Network, and Recurrent Neural Network and demonstrate its superior performance with an R squared of 0.685, an RMSE of 0.675, and an AUC of 0.940. Moreover, attention weight analysis reveals key molecular substructures influencing CB2 receptor activity, underscoring the model's potential as an interpretable AI tool for drug discovery. This ability to pinpoint critical molecular motifs can streamline virtual screening, guide lead optimization, and expedite therapeutic development. Overall, our results showcase the transformative potential of advanced AI approaches exemplified by CB2former in delivering both accurate predictions and actionable molecular insights, thus fostering interdisciplinary collaboration and innovation in drug discovery.
HGTDP-DTA: Hybrid Graph-Transformer with Dynamic Prompt for Drug-Target Binding Affinity Prediction
Xiao, Xi, Wang, Wentao, Xie, Jiacheng, Zhu, Lijing, Chen, Gaofei, Li, Zhengji, Wang, Tianyang, Xu, Min
Drug target binding affinity (DTA) is a key criterion for drug screening. Existing experimental methods are time-consuming and rely on limited structural and domain information. While learning-based methods can model sequence and structural information, they struggle to integrate contextual data and often lack comprehensive modeling of drug-target interactions. In this study, we propose a novel DTA prediction method, termed HGTDP-DTA, which utilizes dynamic prompts within a hybrid Graph-Transformer framework. Our method generates context-specific prompts for each drug-target pair, enhancing the model's ability to capture unique interactions. The introduction of prompt tuning further optimizes the prediction process by filtering out irrelevant noise and emphasizing task-relevant information, dynamically adjusting the input features of the molecular graph. The proposed hybrid Graph-Transformer architecture combines structural information from Graph Convolutional Networks (GCNs) with sequence information captured by Transformers, facilitating the interaction between global and local information. Additionally, we adopted the multi-view feature fusion method to project molecular graph views and affinity subgraph views into a common feature space, effectively combining structural and contextual information. Experiments on two widely used public datasets, Davis and KIBA, show that HGTDP-DTA outperforms state-of-the-art DTA prediction methods in both prediction performance and generalization ability.
Cycle-YOLO: A Efficient and Robust Framework for Pavement Damage Detection
Li, Zhengji, Xiao, Xi, Xie, Jiacheng, Fan, Yuxiao, Wang, Wentao, Chen, Gang, Zhang, Liqiang, Wang, Tianyang
With the development of modern society, traffic volume continues to increase in most countries worldwide, leading to an increase in the rate of pavement damage Therefore, the real-time and highly accurate pavement damage detection and maintenance have become the current need. In this paper, an enhanced pavement damage detection method with CycleGAN and improved YOLOv5 algorithm is presented. We selected 7644 self-collected images of pavement damage samples as the initial dataset and augmented it by CycleGAN. Due to a substantial difference between the images generated by CycleGAN and real road images, we proposed a data enhancement method based on an improved Scharr filter, CycleGAN, and Laplacian pyramid. To improve the target recognition effect on a complex background and solve the problem that the spatial pyramid pooling-fast module in the YOLOv5 network cannot handle multiscale targets, we introduced the convolutional block attention module attention mechanism and proposed the atrous spatial pyramid pooling with squeeze-and-excitation structure. In addition, we optimized the loss function of YOLOv5 by replacing the CIoU with EIoU. The experimental results showed that our algorithm achieved a precision of 0.872, recall of 0.854, and mean average precision@0.5 of 0.882 in detecting three main types of pavement damage: cracks, potholes, and patching. On the GPU, its frames per second reached 68, meeting the requirements for real-time detection. Its overall performance even exceeded the current more advanced YOLOv7 and achieved good results in practical applications, providing a basis for decision-making in pavement damage detection and prevention.
Prior Frequency Guided Diffusion Model for Limited Angle (LA)-CBCT Reconstruction
Xie, Jiacheng, Shao, Hua-Chieh, Li, Yunxiang, Zhang, You
Cone-beam computed tomography (CBCT) is widely used in image-guided radiotherapy. Reconstructing CBCTs from limited-angle acquisitions (LA-CBCT) is highly desired for improved imaging efficiency, dose reduction, and better mechanical clearance. LA-CBCT reconstruction, however, suffers from severe under-sampling artifacts, making it a highly ill-posed inverse problem. Diffusion models can generate data/images by reversing a data-noising process through learned data distributions; and can be incorporated as a denoiser/regularizer in LA-CBCT reconstruction. In this study, we developed a diffusion model-based framework, prior frequency-guided diffusion model (PFGDM), for robust and structure-preserving LA-CBCT reconstruction. PFGDM uses a conditioned diffusion model as a regularizer for LA-CBCT reconstruction, and the condition is based on high-frequency information extracted from patient-specific prior CT scans which provides a strong anatomical prior for LA-CBCT reconstruction. Specifically, we developed two variants of PFGDM (PFGDM-A and PFGDM-B) with different conditioning schemes. PFGDM-A applies the high-frequency CT information condition until a pre-optimized iteration step, and drops it afterwards to enable both similar and differing CT/CBCT anatomies to be reconstructed. PFGDM-B, on the other hand, continuously applies the prior CT information condition in every reconstruction step, while with a decaying mechanism, to gradually phase out the reconstruction guidance from the prior CT scans. The two variants of PFGDM were tested and compared with current available LA-CBCT reconstruction solutions, via metrics including PSNR and SSIM. PFGDM outperformed all traditional and diffusion model-based methods. PFGDM reconstructs high-quality LA-CBCTs under very-limited gantry angles, allowing faster and more flexible CBCT scans with dose reductions.