Not enough data to create a plot.
Try a different view from the menu above.
Xie, Di
Unbiased Evaluation of Large Language Models from a Causal Perspective
Chen, Meilin, Tian, Jian, Ma, Liang, Xie, Di, Chen, Weijie, Zhu, Jiang
Benchmark contamination has become a significant concern in the LLM evaluation community. Previous Agents-as-an-Evaluator address this issue by involving agents in the generation of questions. Despite their success, the biases in Agents-as-an-Evaluator methods remain largely unexplored. In this paper, we present a theoretical formulation of evaluation bias, providing valuable insights into designing unbiased evaluation protocols. Furthermore, we identify two type of bias in Agents-as-an-Evaluator through carefully designed probing tasks on a minimal Agents-as-an-Evaluator setup. To address these issues, we propose the Unbiased Evaluator, an evaluation protocol that delivers a more comprehensive, unbiased, and interpretable assessment of LLMs.Extensive experiments reveal significant room for improvement in current LLMs. Additionally, we demonstrate that the Unbiased Evaluator not only offers strong evidence of benchmark contamination but also provides interpretable evaluation results.
"Lossless" Compression of Deep Neural Networks: A High-dimensional Neural Tangent Kernel Approach
Gu, Lingyu, Du, Yongqi, Zhang, Yuan, Xie, Di, Pu, Shiliang, Qiu, Robert C., Liao, Zhenyu
Modern deep neural networks (DNNs) are extremely powerful; however, this comes at the price of increased depth and having more parameters per layer, making their training and inference more computationally challenging. In an attempt to address this key limitation, efforts have been devoted to the compression (e.g., sparsification and/or quantization) of these large-scale machine learning models, so that they can be deployed on low-power IoT devices. In this paper, building upon recent advances in neural tangent kernel (NTK) and random matrix theory (RMT), we provide a novel compression approach to wide and fully-connected \emph{deep} neural nets. Specifically, we demonstrate that in the high-dimensional regime where the number of data points $n$ and their dimension $p$ are both large, and under a Gaussian mixture model for the data, there exists \emph{asymptotic spectral equivalence} between the NTK matrices for a large family of DNN models. This theoretical result enables "lossless" compression of a given DNN to be performed, in the sense that the compressed network yields asymptotically the same NTK as the original (dense and unquantized) network, with its weights and activations taking values \emph{only} in $\{ 0, \pm 1 \}$ up to a scaling. Experiments on both synthetic and real-world data are conducted to support the advantages of the proposed compression scheme, with code available at \url{https://github.com/Model-Compression/Lossless_Compression}.
Adapt Anything: Tailor Any Image Classifiers across Domains And Categories Using Text-to-Image Diffusion Models
Chen, Weijie, Wang, Haoyu, Yang, Shicai, Zhang, Lei, Wei, Wei, Zhang, Yanning, Lin, Luojun, Xie, Di, Zhuang, Yueting
We do not pursue a novel method in this paper, but aim to study if a modern text-to-image diffusion model can tailor any task-adaptive image classifier across domains and categories. Existing domain adaptive image classification works exploit both source and target data for domain alignment so as to transfer the knowledge learned from the labeled source data to the unlabeled target data. However, as the development of the text-to-image diffusion model, we wonder if the high-fidelity synthetic data from the text-to-image generator can serve as a surrogate of the source data in real world. In this way, we do not need to collect and annotate the source data for each domain adaptation task in a one-for-one manner. Instead, we utilize only one off-the-shelf text-to-image model to synthesize images with category labels derived from the corresponding text prompts, and then leverage the surrogate data as a bridge to transfer the knowledge embedded in the task-agnostic text-to-image generator to the task-oriented image classifier via domain adaptation. Such a one-for-all adaptation paradigm allows us to adapt anything in the world using only one text-to-image generator as well as the corresponding unlabeled target data. Extensive experiments validate the feasibility of the proposed idea, which even surpasses the state-of-the-art domain adaptation works using the source data collected and annotated in real world.
Hindsight Reward Tweaking via Conditional Deep Reinforcement Learning
Wei, Ning, Liang, Jiahua, Xie, Di, Pu, Shiliang
Designing optimal reward functions has been desired but extremely difficult in reinforcement learning (RL). When it comes to modern complex tasks, sophisticated reward functions are widely used to simplify policy learning yet even a tiny adjustment on them is expensive to evaluate due to the drastically increasing cost of training. To this end, we propose a hindsight reward tweaking approach by designing a novel paradigm for deep reinforcement learning to model the influences of reward functions within a near-optimal space. We simply extend the input observation with a condition vector linearly correlated with the effective environment reward parameters and train the model in a conventional manner except for randomizing reward configurations, obtaining a hyper-policy whose characteristics are sensitively regulated over the condition space. We demonstrate the feasibility of this approach and study one of its potential application in policy performance boosting with multiple MuJoCo tasks.