Xiao, Xuesu
Autonomous Ground Navigation in Highly Constrained Spaces: Lessons learned from The 2nd BARN Challenge at ICRA 2023
Xiao, Xuesu, Xu, Zifan, Warnell, Garrett, Stone, Peter, Guinjoan, Ferran Gebelli, Rodrigues, Romulo T., Bruyninckx, Herman, Mandala, Hanjaya, Christmann, Guilherme, Blanco-Claraco, Jose Luis, Rai, Shravan Somashekara
The 2nd BARN (Benchmark Autonomous Robot Navigation) Challenge took place at the 2023 IEEE International Conference on Robotics and Automation (ICRA 2023) in London, UK and continued to evaluate the performance of state-of-the-art autonomous ground navigation systems in highly constrained environments. Compared to The 1st BARN Challenge at ICRA 2022 in Philadelphia, the competition has grown significantly in size, doubling the numbers of participants in both the simulation qualifier and physical finals: Ten teams from all over the world participated in the qualifying simulation competition, six of which were invited to compete with each other in three physical obstacle courses at the conference center in London, and three teams won the challenge by navigating a Clearpath Jackal robot from a predefined start to a goal with the shortest amount of time without colliding with any obstacle. The competition results, compared to last year, suggest that the teams are making progress toward more robust and efficient ground navigation systems that work out-of-the-box in many obstacle environments. However, a significant amount of fine-tuning is still needed onsite to cater to different difficult navigation scenarios. Furthermore, challenges still remain for many teams when facing extremely cluttered obstacles and increasing navigation speed. In this article, we discuss the challenge, the approaches used by the three winning teams, and lessons learned to direct future research.
Benchmarking Reinforcement Learning Techniques for Autonomous Navigation
Xu, Zifan, Liu, Bo, Xiao, Xuesu, Nair, Anirudh, Stone, Peter
Deep reinforcement learning (RL) has brought many successes for autonomous robot navigation. However, there still exists important limitations that prevent real-world use of RL-based navigation systems. For example, most learning approaches lack safety guarantees; and learned navigation systems may not generalize well to unseen environments. Despite a variety of recent learning techniques to tackle these challenges in general, a lack of an open-source benchmark and reproducible learning methods specifically for autonomous navigation makes it difficult for roboticists to choose what learning methods to use for their mobile robots and for learning researchers to identify current shortcomings of general learning methods for autonomous navigation. In this paper, we identify four major desiderata of applying deep RL approaches for autonomous navigation: (D1) reasoning under uncertainty, (D2) safety, (D3) learning from limited trial-and-error data, and (D4) generalization to diverse and novel environments. Then, we explore four major classes of learning techniques with the purpose of achieving one or more of the four desiderata: memory-based neural network architectures (D1), safe RL (D2), model-based RL (D2, D3), and domain randomization (D4). By deploying these learning techniques in a new open-source large-scale navigation benchmark and real-world environments, we perform a comprehensive study aimed at establishing to what extent can these techniques achieve these desiderata for RL-based navigation systems.
Team Coordination on Graphs with State-Dependent Edge Cost
Oughourli, Sara, Limbu, Manshi, Hu, Zechen, Wang, Xuan, Xiao, Xuesu, Shishika, Daigo
This paper studies a team coordination problem in a graph environment. Specifically, we incorporate "support" action which an agent can take to reduce the cost for its teammate to traverse some edges that have higher costs otherwise. Due to this added feature, the graph traversal is no longer a standard multi-agent path planning problem. To solve this new problem, we propose a novel formulation by posing it as a planning problem in the joint state space: the joint state graph (JSG). Since the edges of JSG implicitly incorporate the support actions taken by the agents, we are able to now optimize the joint actions by solving a standard single-agent path planning problem in JSG. One main drawback of this approach is the curse of dimensionality in both the number of agents and the size of the graph. To improve scalability in graph size, we further propose a hierarchical decomposition method to perform path planning in two levels. We provide complexity analysis as well as a statistical analysis to demonstrate the efficiency of our algorithm.
Conflict Avoidance in Social Navigation -- a Survey
Mirsky, Reuth, Xiao, Xuesu, Hart, Justin, Stone, Peter
A major goal in robotics is to enable intelligent mobile robots to operate smoothly in shared human-robot environments. One of the most fundamental capabilities in service of this goal is competent navigation in this ``social" context. As a result, there has been a recent surge of research on social navigation; and especially as it relates to the handling of conflicts between agents during social navigation. These developments introduce a variety of models and algorithms, however as this research area is inherently interdisciplinary, many of the relevant papers are not comparable and there is no shared standard vocabulary. This survey aims to bridge this gap by introducing such a common language, using it to survey existing work, and highlighting open problems. It starts by defining the boundaries of this survey to a limited, yet highly common type of social navigation - conflict avoidance. Within this proposed scope, this survey introduces a detailed taxonomy of the conflict avoidance components. This survey then maps existing work into this taxonomy, while discussing papers using its framing. Finally, this paper proposes some future research directions and open problems that are currently on the frontier of social navigation to aid ongoing and future research.
VI-IKD: High-Speed Accurate Off-Road Navigation using Learned Visual-Inertial Inverse Kinodynamics
Karnan, Haresh, Sikand, Kavan Singh, Atreya, Pranav, Rabiee, Sadegh, Xiao, Xuesu, Warnell, Garrett, Stone, Peter, Biswas, Joydeep
One of the key challenges in high speed off road navigation on ground vehicles is that the kinodynamics of the vehicle terrain interaction can differ dramatically depending on the terrain. Previous approaches to addressing this challenge have considered learning an inverse kinodynamics (IKD) model, conditioned on inertial information of the vehicle to sense the kinodynamic interactions. In this paper, we hypothesize that to enable accurate high-speed off-road navigation using a learned IKD model, in addition to inertial information from the past, one must also anticipate the kinodynamic interactions of the vehicle with the terrain in the future. To this end, we introduce Visual-Inertial Inverse Kinodynamics (VI-IKD), a novel learning based IKD model that is conditioned on visual information from a terrain patch ahead of the robot in addition to past inertial information, enabling it to anticipate kinodynamic interactions in the future. We validate the effectiveness of VI-IKD in accurate high-speed off-road navigation experimentally on a scale 1/5 UT-AlphaTruck off-road autonomous vehicle in both indoor and outdoor environments and show that compared to other state-of-the-art approaches, VI-IKD enables more accurate and robust off-road navigation on a variety of different terrains at speeds of up to 3.5 m/s.
VOILA: Visual-Observation-Only Imitation Learning for Autonomous Navigation
Karnan, Haresh, Warnell, Garrett, Xiao, Xuesu, Stone, Peter
While imitation learning for vision based autonomous mobile robot navigation has recently received a great deal of attention in the research community, existing approaches typically require state action demonstrations that were gathered using the deployment platform. However, what if one cannot easily outfit their platform to record these demonstration signals or worse yet the demonstrator does not have access to the platform at all? Is imitation learning for vision based autonomous navigation even possible in such scenarios? In this work, we hypothesize that the answer is yes and that recent ideas from the Imitation from Observation (IfO) literature can be brought to bear such that a robot can learn to navigate using only ego centric video collected by a demonstrator, even in the presence of viewpoint mismatch. To this end, we introduce a new algorithm, Visual Observation only Imitation Learning for Autonomous navigation (VOILA), that can successfully learn navigation policies from a single video demonstration collected from a physically different agent. We evaluate VOILA in the photorealistic AirSim simulator and show that VOILA not only successfully imitates the expert, but that it also learns navigation policies that can generalize to novel environments. Further, we demonstrate the effectiveness of VOILA in a real world setting by showing that it allows a wheeled Jackal robot to successfully imitate a human walking in an environment using a video recorded using a mobile phone camera.
Explicit-risk-aware Path Planning with Reward Maximization
Xiao, Xuesu, Dufek, Jan, Murphy, Robin
This paper develops a path planner that minimizes risk (e.g. motion execution) while maximizing accumulated reward (e.g., quality of sensor viewpoint) motivated by visual assistance or tracking scenarios in unstructured or confined environments. In these scenarios, the robot should maintain the best viewpoint as it moves to the goal. However, in unstructured or confined environments, some paths may increase the risk of collision; therefore there is a tradeoff between risk and reward. Conventional state-dependent risk or probabilistic uncertainty modeling do not consider path-level risk or is difficult to acquire. This risk-reward planner explicitly represents risk as a function of motion plans, i.e., paths. Without manual assignment of the negative impact to the planner caused by risk, this planner takes in a pre-established viewpoint quality map and plans target location and path leading to it simultaneously, in order to maximize overall reward along the entire path while minimizing risk. Exact and approximate algorithms are presented, whose solution is further demonstrated on a physical tethered aerial vehicle. Other than the visual assistance problem, the proposed framework also provides a new planning paradigm to address minimum-risk planning under dynamical risk and absence of substructure optimality and to balance the trade-off between reward and risk.