Plotting

 Xiao, Chaowei


Exploring the Limits of ChatGPT in Software Security Applications

arXiv.org Artificial Intelligence

Large language models (LLMs) have undergone rapid evolution and achieved remarkable results in recent times. OpenAI's ChatGPT, backed by GPT-3.5 or GPT-4, has gained instant popularity due to its strong capability across a wide range of tasks, including natural language tasks, coding, mathematics, and engaging conversations. However, the impacts and limits of such LLMs in system security domain are less explored. In this paper, we delve into the limits of LLMs (i.e., ChatGPT) in seven software security applications including vulnerability detection/repair, debugging, debloating, decompilation, patching, root cause analysis, symbolic execution, and fuzzing. Our exploration reveals that ChatGPT not only excels at generating code, which is the conventional application of language models, but also demonstrates strong capability in understanding user-provided commands in natural languages, reasoning about control and data flows within programs, generating complex data structures, and even decompiling assembly code. Notably, GPT-4 showcases significant improvements over GPT-3.5 in most security tasks. Also, certain limitations of ChatGPT in security-related tasks are identified, such as its constrained ability to process long code contexts.


A Text-guided Protein Design Framework

arXiv.org Machine Learning

Meanwhile, there exists tremendous knowledge curated by humans in the text format describing proteins' high-level functionalities. Yet, whether the incorporation of such text data can help protein design tasks has not been explored. To bridge this gap, we propose ProteinDT, a multi-modal framework that leverages textual descriptions for protein design. ProteinDT consists of three subsequent steps: ProteinCLAP which aligns the representation of two modalities, a facilitator that generates the protein representation from the text modality, and a decoder that creates the protein sequences from the representation. To train ProteinDT, we construct a large dataset, SwissProtCLAP, with 441K text and protein pairs. We quantitatively verify the effectiveness of ProteinDT on three challenging tasks: (1) over 90% accuracy for text-guided protein generation; (2) best hit ratio on 10 zero-shot text-guided protein editing tasks; (3) superior performance on four out of six protein property prediction benchmarks. Machine learning (ML) has recently shown profound potential for protein discovery. These ML tools have been quickly adapted as auxiliary and accelerating roles in scientific pipelines, including but not limited to protein engineering [1], structure prediction [2], structure reconstruction [3], and inverse folding [4].


Multi-modal Molecule Structure-text Model for Text-based Retrieval and Editing

arXiv.org Machine Learning

There is increasing adoption of artificial intelligence in drug discovery. However, existing studies use machine learning to mainly utilize the chemical structures of molecules but ignore the vast textual knowledge available in chemistry. Incorporating textual knowledge enables us to realize new drug design objectives, adapt to text-based instructions and predict complex biological activities. Here we present a multi-modal molecule structure-text model, MoleculeSTM, by jointly learning molecules' chemical structures and textual descriptions via a contrastive learning strategy. To train MoleculeSTM, we construct a large multi-modal dataset, namely, PubChemSTM, with over 280,000 chemical structure-text pairs. To demonstrate the effectiveness and utility of MoleculeSTM, we design two challenging zero-shot tasks based on text instructions, including structure-text retrieval and molecule editing. MoleculeSTM has two main properties: open vocabulary and compositionality via natural language.


CALICO: Self-Supervised Camera-LiDAR Contrastive Pre-training for BEV Perception

arXiv.org Artificial Intelligence

Perception is crucial in the realm of autonomous driving systems, where bird's eye view (BEV)-based architectures have recently reached state-of-the-art performance. The desirability of self-supervised representation learning stems from the expensive and laborious process of annotating 2D and 3D data. Although previous research has investigated pretraining methods for both LiDAR and camera-based 3D object detection, a unified pretraining framework for multimodal BEV perception is missing. In this study, we introduce CALICO, a novel framework that applies contrastive objectives to both LiDAR and camera backbones. Specifically, CALICO incorporates two stages: point-region contrast (PRC) and region-aware distillation (RAD). PRC better balances the region- and scene-level representation learning on the LiDAR modality and offers significant performance improvement compared to existing methods. RAD effectively achieves contrastive distillation on our self-trained teacher model. CALICO's efficacy is substantiated by extensive evaluations on 3D object detection and BEV map segmentation tasks, where it delivers significant performance improvements. Notably, CALICO outperforms the baseline method by 10.5% and 8.6% on NDS and mAP. Moreover, CALICO boosts the robustness of multimodal 3D object detection against adversarial attacks and corruption. Additionally, our framework can be tailored to different backbones and heads, positioning it as a promising approach for multimodal BEV perception.


Cognitive Overload: Jailbreaking Large Language Models with Overloaded Logical Thinking

arXiv.org Artificial Intelligence

While large language models (LLMs) have demonstrated increasing power, they have also given rise to a wide range of harmful behaviors. As representatives, jailbreak attacks can provoke harmful or unethical responses from LLMs, even after safety alignment. In this paper, we investigate a novel category of jailbreak attacks specifically designed to target the cognitive structure and processes of LLMs. Specifically, we analyze the safety vulnerability of LLMs in the face of (1) multilingual cognitive overload, (2) veiled expression, and (3) effect-to-cause reasoning. Different from previous jailbreak attacks, our proposed cognitive overload is a black-box attack with no need for knowledge of model architecture or access to model weights. Experiments conducted on AdvBench and MasterKey reveal that various LLMs, including both popular open-source model Llama 2 and the proprietary model ChatGPT, can be compromised through cognitive overload. Motivated by cognitive psychology work on managing cognitive load, we further investigate defending cognitive overload attack from two perspectives. Empirical studies show that our cognitive overload from three perspectives can jailbreak all studied LLMs successfully, while existing defense strategies can hardly mitigate the caused malicious uses effectively.


On the Exploitability of Reinforcement Learning with Human Feedback for Large Language Models

arXiv.org Artificial Intelligence

Reinforcement Learning with Human Feedback (RLHF) is a methodology designed to align Large Language Models (LLMs) with human preferences, playing an important role in LLMs alignment. Despite its advantages, RLHF relies on human annotators to rank the text, which can introduce potential security vulnerabilities if any adversarial annotator (i.e., attackers) manipulates the ranking score by up-ranking any malicious text to steer the LLM adversarially. To assess the red-teaming of RLHF against human preference data poisoning, we propose RankPoison, a poisoning attack method on candidates' selection of preference rank flipping to reach certain malicious behaviors (e.g., generating longer sequences, which can increase the computational cost). With poisoned dataset generated by RankPoison, we can perform poisoning attacks on LLMs to generate longer tokens without hurting the original safety alignment performance. Moreover, applying RankPoison, we also successfully implement a backdoor attack where LLMs can generate longer answers under questions with the trigger word. Our findings highlight critical security challenges in RLHF, underscoring the necessity for more robust alignment methods for LLMs.


Test-time Backdoor Mitigation for Black-Box Large Language Models with Defensive Demonstrations

arXiv.org Artificial Intelligence

Existing studies in backdoor defense have predominantly focused on the training phase, overlooking the critical aspect of testing time defense. This gap becomes particularly pronounced in the context of Large Language Models (LLMs) deployed as Web Services, which typically offer only black-box access, rendering training-time defenses impractical. To bridge this gap, our work introduces defensive demonstrations, an innovative backdoor defense strategy for blackbox large language models. Our method involves identifying the task and retrieving task-relevant demonstrations from an uncontaminated pool. These demonstrations are then combined with user queries and presented to the model during testing, without requiring any modifications/tuning to the black-box model or insights into its internal mechanisms. Defensive demonstrations are designed to counteract the adverse effects of triggers, aiming to recalibrate and correct the behavior of poisoned models during test-time evaluations. Extensive experiments show that defensive demonstrations are effective in defending both instance-level and instruction-level backdoor attacks, not only rectifying the behavior of poisoned models but also surpassing existing baselines in most scenarios.


On the Exploitability of Instruction Tuning

arXiv.org Artificial Intelligence

Instruction tuning is an effective technique to align large language models (LLMs) with human intents. In this work, we investigate how an adversary can exploit instruction tuning by injecting specific instruction-following examples into the training data that intentionally changes the model's behavior. For example, an adversary can achieve content injection by injecting training examples that mention target content and eliciting such behavior from downstream models. To achieve this goal, we propose \textit{AutoPoison}, an automated data poisoning pipeline. It naturally and coherently incorporates versatile attack goals into poisoned data with the help of an oracle LLM. We showcase two example attacks: content injection and over-refusal attacks, each aiming to induce a specific exploitable behavior. We quantify and benchmark the strength and the stealthiness of our data poisoning scheme. Our results show that AutoPoison allows an adversary to change a model's behavior by poisoning only a small fraction of data while maintaining a high level of stealthiness in the poisoned examples. We hope our work sheds light on how data quality affects the behavior of instruction-tuned models and raises awareness of the importance of data quality for responsible deployments of LLMs. Code is available at \url{https://github.com/azshue/AutoPoison}.


Re-ViLM: Retrieval-Augmented Visual Language Model for Zero and Few-Shot Image Captioning

arXiv.org Artificial Intelligence

Augmenting pretrained language models (LMs) with a vision encoder (e.g., Flamingo) has obtained the state-of-the-art results in image-to-text generation. However, these models store all the knowledge within their parameters, thus often requiring enormous model parameters to model the abundant visual concepts and very rich textual descriptions. Additionally, they are inefficient in incorporating new data, requiring a computational-expensive fine-tuning process. In this work, we introduce a Retrieval-augmented Visual Language Model, Re-ViLM, built upon the Flamingo, that supports retrieving the relevant knowledge from the external database for zero and in-context few-shot image-to-text generations. By storing certain knowledge explicitly in the external database, our approach reduces the number of model parameters and can easily accommodate new data during evaluation by simply updating the database. We also construct an interleaved image and text data that facilitates in-context few-shot learning capabilities. We demonstrate that Re-ViLM significantly boosts performance for image-to-text generation tasks, especially for zero-shot and few-shot generation in out-of-domain settings with 4 times less parameters compared with baseline methods.


Voyager: An Open-Ended Embodied Agent with Large Language Models

arXiv.org Artificial Intelligence

We introduce Voyager, the first LLM-powered embodied lifelong learning agent in Minecraft that continuously explores the world, acquires diverse skills, and makes novel discoveries without human intervention. Voyager consists of three key components: 1) an automatic curriculum that maximizes exploration, 2) an ever-growing skill library of executable code for storing and retrieving complex behaviors, and 3) a new iterative prompting mechanism that incorporates environment feedback, execution errors, and self-verification for program improvement. Voyager interacts with GPT-4 via blackbox queries, which bypasses the need for model parameter fine-tuning. The skills developed by Voyager are temporally extended, interpretable, and compositional, which compounds the agent's abilities rapidly and alleviates catastrophic forgetting. Empirically, Voyager shows strong in-context lifelong learning capability and exhibits exceptional proficiency in playing Minecraft. It obtains 3.3x more unique items, travels 2.3x longer distances, and unlocks key tech tree milestones up to 15.3x faster than prior SOTA. Voyager is able to utilize the learned skill library in a new Minecraft world to solve novel tasks from scratch, while other techniques struggle to generalize. We open-source our full codebase and prompts at https://voyager.minedojo.org/.