Goto

Collaborating Authors

 Xiang, Yong


An Efficient and Reliable Asynchronous Federated Learning Scheme for Smart Public Transportation

arXiv.org Artificial Intelligence

Since the traffic conditions change over time, machine learning models that predict traffic flows must be updated continuously and efficiently in smart public transportation. Federated learning (FL) is a distributed machine learning scheme that allows buses to receive model updates without waiting for model training on the cloud. However, FL is vulnerable to poisoning or DDoS attacks since buses travel in public. Some work introduces blockchain to improve reliability, but the additional latency from the consensus process reduces the efficiency of FL. Asynchronous Federated Learning (AFL) is a scheme that reduces the latency of aggregation to improve efficiency, but the learning performance is unstable due to unreasonably weighted local models. To address the above challenges, this paper offers a blockchain-based asynchronous federated learning scheme with a dynamic scaling factor (DBAFL). Specifically, the novel committee-based consensus algorithm for blockchain improves reliability at the lowest possible cost of time. Meanwhile, the devised dynamic scaling factor allows AFL to assign reasonable weights to stale local models. Extensive experiments conducted on heterogeneous devices validate outperformed learning performance, efficiency, and reliability of DBAFL.


Temporal Knowledge Graph Completion: A Survey

arXiv.org Artificial Intelligence

Knowledge graph completion (KGC) can predict missing links and is crucial for real-world knowledge graphs, which widely suffer from incompleteness. KGC methods assume a knowledge graph is static, but that may lead to inaccurate prediction results because many facts in the knowledge graphs change over time. Recently, emerging methods have shown improved predictive results by further incorporating the timestamps of facts; namely, temporal knowledge graph completion (TKGC). With this temporal information, TKGC methods can learn the dynamic evolution of the knowledge graph that KGC methods fail to capture. In this paper, for the first time, we summarize the recent advances in TKGC research. First, we detail the background of TKGC, including the problem definition, benchmark datasets, and evaluation metrics. Then, we summarize existing TKGC methods based on how timestamps of facts are used to capture the temporal dynamics. Finally, we conclude the paper and present future research directions of TKGC.


Multi-class Classification Based Anomaly Detection of Insider Activities

arXiv.org Artificial Intelligence

Insider threats are the cyber attacks from within the trusted entities of an organization. Lack of real-world data and issue of data imbalance leave insider threat analysis an understudied research area. To mitigate the effect of skewed class distribution and prove the potential of multinomial classification algorithms for insider threat detection, we propose an approach that combines generative model with supervised learning to perform multi-class classification using deep learning. The generative adversarial network (GAN) based insider detection model introduces Conditional Generative Adversarial Network (CGAN) to enrich minority class samples to provide data for multi-class anomaly detection. The comprehensive experiments performed on the benchmark dataset demonstrates the effectiveness of introducing GAN derived synthetic data and the capability of multi-class anomaly detection in insider activity analysis. Moreover, the method is compared with other existing methods against different parameters and performance metrics.


Variational Auto-encoder Based Bayesian Poisson Tensor Factorization for Sparse and Imbalanced Count Data

arXiv.org Machine Learning

Non-negative tensor factorization models enable predictive analysis on count data. Among them, Bayesian Poisson-Gamma models are able to derive full posterior distributions of latent factors and are less sensitive to sparse count data. However, current inference methods for these Bayesian models adopt restricted update rules for the posterior parameters. They also fail to share the update information to better cope with the data sparsity. Moreover, these models are not endowed with a component that handles the imbalance in count data values. In this paper, we propose a novel variational auto-encoder framework called VAE-BPTF which addresses the above issues. It uses multi-layer perceptron networks to encode and share complex update information. The encoded information is then reweighted per data instance to penalize common data values before aggregated to compute the posterior parameters for the latent factors. Under synthetic data evaluation, VAE-BPTF tended to recover the right number of latent factors and posterior parameter values. It also outperformed current models in both reconstruction errors and latent factor (semantic) coherence across five real-world datasets. Furthermore, the latent factors inferred by VAE-BPTF are perceived to be meaningful and coherent under a qualitative analysis.


Tag-based Semantic Features for Scene Image Classification

arXiv.org Artificial Intelligence

The existing image feature extraction methods are primarily based on the content and structure information of images, and rarely consider the contextual semantic information. Regarding some types of images such as scenes and objects, the annotations and descriptions of them available on the web may provide reliable contextual semantic information for feature extraction. In this paper, we introduce novel semantic features of an image based on the annotations and descriptions of its similar images available on the web. Specifically, we propose a new method which consists of two consecutive steps to extract our semantic features. For each image in the training set, we initially search the top $k$ most similar images from the internet and extract their annotations/descriptions (e.g., tags or keywords). The annotation information is employed to design a filter bank for each image category and generate filter words (codebook). Finally, each image is represented by the histogram of the occurrences of filter words in all categories. We evaluate the performance of the proposed features in scene image classification on three commonly-used scene image datasets (i.e., MIT-67, Scene15 and Event8). Our method typically produces a lower feature dimension than existing feature extraction methods. Experimental results show that the proposed features generate better classification accuracies than vision based and tag based features, and comparable results to deep learning based features.


A Technical Survey on Statistical Modelling and Design Methods for Crowdsourcing Quality Control

arXiv.org Machine Learning

Online crowdsourcing provides a scalable and inexpensive means to collect knowledge (e.g. labels) about various types of data items (e.g. text, audio, video). However, it is also known to result in large variance in the quality of recorded responses which often cannot be directly used for training machine learning systems. To resolve this issue, a lot of work has been conducted to control the response quality such that low-quality responses cannot adversely affect the performance of the machine learning systems. Such work is referred to as the quality control for crowdsourcing. Past quality control research can be divided into two major branches: quality control mechanism design and statistical models. The first branch focuses on designing measures, thresholds, interfaces and workflows for payment, gamification, question assignment and other mechanisms that influence workers' behaviour. The second branch focuses on developing statistical models to perform effective aggregation of responses to infer correct responses. The two branches are connected as statistical models (i) provide parameter estimates to support the measure and threshold calculation, and (ii) encode modelling assumptions used to derive (theoretical) performance guarantees for the mechanisms. There are surveys regarding each branch but they lack technical details about the other branch. Our survey is the first to bridge the two branches by providing technical details on how they work together under frameworks that systematically unify crowdsourcing aspects modelled by both of them to determine the response quality. We are also the first to provide taxonomies of quality control papers based on the proposed frameworks. Finally, we specify the current limitations and the corresponding future directions for the quality control research.