Goto

Collaborating Authors

 Xiang, Tao


Deep Reinforcement Learning for Unsupervised Video Summarization With Diversity-Representativeness Reward

AAAI Conferences

Video summarization aims to facilitate large-scale video browsing by producing short, concise summaries that are diverse and representative of original videos. In this paper, we formulate video summarization as a sequential decision-making process and develop a deep summarization network (DSN) to summarize videos. DSN predicts for each video frame a probability, which indicates how likely a frame is selected, and then takes actions based on the probability distributions to select frames, forming video summaries. To train our DSN, we propose an end-to-end, reinforcement learning-based framework, where we design a novel reward function that jointly accounts for diversity and representativeness of generated summaries and does not rely on labels or user interactions at all. During training, the reward function judges how diverse and representative the generated summaries are, while DSN strives for earning higher rewards by learning to produce more diverse and more representative summaries. Since labels are not required, our method can be fully unsupervised. Extensive experiments on two benchmark datasets show that our unsupervised method not only outperforms other state-of-the-art unsupervised methods, but also is comparable to or even superior than most of published supervised approaches.


Equivalence of restricted Boltzmann machines and tensor network states

arXiv.org Machine Learning

The restricted Boltzmann machine (RBM) is one of the fundamental building blocks of deep learning. RBM finds wide applications in dimensional reduction, feature extraction, and recommender systems via modeling the probability distributions of a variety of input data including natural images, speech signals, and customer ratings, etc. We build a bridge between RBM and tensor network states (TNS) widely used in quantum many-body physics research. We devise efficient algorithms to translate an RBM into the commonly used TNS. Conversely, we give sufficient and necessary conditions to determine whether a TNS can be transformed into an RBM of given architectures. Revealing these general and constructive connections can cross-fertilize both deep learning and quantum many-body physics. Notably, by exploiting the entanglement entropy bound of TNS, we can rigorously quantify the expressive power of RBM on complex data sets. Insights into TNS and its entanglement capacity can guide the design of more powerful deep learning architectures. On the other hand, RBM can represent quantum many-body states with fewer parameters compared to TNS, which may allow more efficient classical simulations.


Recent Advances in Zero-shot Recognition

arXiv.org Machine Learning

With the recent renaissance of deep convolution neural networks, encouraging breakthroughs have been achieved on the supervised recognition tasks, where each class has sufficient training data and fully annotated training data. However, to scale the recognition to a large number of classes with few or now training samples for each class remains an unsolved problem. One approach to scaling up the recognition is to develop models capable of recognizing unseen categories without any training instances, or zero-shot recognition/ learning. This article provides a comprehensive review of existing zero-shot recognition techniques covering various aspects ranging from representations of models, and from datasets and evaluation settings. We also overview related recognition tasks including one-shot and open set recognition which can be used as natural extensions of zero-shot recognition when limited number of class samples become available or when zero-shot recognition is implemented in a real-world setting. Importantly, we highlight the limitations of existing approaches and point out future research directions in this existing new research area.


Robust Complex Behaviour Modeling at 90Hz

AAAI Conferences

Modeling complex crowd behaviour for tasks such as rare event detection has received increasing interest. However, existing methods are limited because (1) they are sensitive to noise often resulting in a large number of false alarms; and (2) they rely on elaborate models leading to high computational cost thus unsuitable for processing a large number of video inputs in real-time. In this paper, we overcome these limitations by introducing a novel complex behaviour modeling framework, which consists of a Binarized Cumulative Directional (BCD) feature as representation, novel spatial and temporal context modeling via an iterative correlation maximization, and a set of behaviour models, each being a simple Bernoulli distribution. Despite its simplicity, our experiments on three benchmark datasets show that it significantly outperforms the state-of-the-art for both temporal video segmentation and rare event detection. Importantly, it is extremely efficient — reaches 90Hz on a normal PC platform using MATLAB.