Goto

Collaborating Authors

 Xiang, Tao


G$^2$uardFL: Safeguarding Federated Learning Against Backdoor Attacks through Attributed Client Graph Clustering

arXiv.org Artificial Intelligence

Federated Learning (FL) offers collaborative model training without data sharing but is vulnerable to backdoor attacks, where poisoned model weights lead to compromised system integrity. Existing countermeasures, primarily based on anomaly detection, are prone to erroneous rejections of normal weights while accepting poisoned ones, largely due to shortcomings in quantifying similarities among client models. Furthermore, other defenses demonstrate effectiveness only when dealing with a limited number of malicious clients, typically fewer than 10%. To alleviate these vulnerabilities, we present G$^2$uardFL, a protective framework that reinterprets the identification of malicious clients as an attributed graph clustering problem, thus safeguarding FL systems. Specifically, this framework employs a client graph clustering approach to identify malicious clients and integrates an adaptive mechanism to amplify the discrepancy between the aggregated model and the poisoned ones, effectively eliminating embedded backdoors. We also conduct a theoretical analysis of convergence to confirm that G$^2$uardFL does not affect the convergence of FL systems. Through empirical evaluation, comparing G$^2$uardFL with cutting-edge defenses, such as FLAME (USENIX Security 2022) [28] and DeepSight (NDSS 2022) [36], against various backdoor attacks including 3DFed (SP 2023) [20], our results demonstrate its significant effectiveness in mitigating backdoor attacks while having a negligible impact on the aggregated model's performance on benign samples (i.e., the primary task performance). For instance, in an FL system with 25% malicious clients, G$^2$uardFL reduces the attack success rate to 10.61%, while maintaining a primary task performance of 73.05% on the CIFAR-10 dataset. This surpasses the performance of the best-performing baseline, which merely achieves a primary task performance of 19.54%.


Refine, Discriminate and Align: Stealing Encoders via Sample-Wise Prototypes and Multi-Relational Extraction

arXiv.org Artificial Intelligence

This paper introduces RDA, a pioneering approach designed to address two primary deficiencies prevalent in previous endeavors aiming at stealing pre-trained encoders: (1) suboptimal performances attributed to biased optimization objectives, and (2) elevated query costs stemming from the end-to-end paradigm that necessitates querying the target encoder every epoch. Specifically, we initially Refine the representations of the target encoder for each training sample, thereby establishing a less biased optimization objective before the steal-training phase. This is accomplished via a sample-wise prototype, which consolidates the target encoder's representations for a given sample's various perspectives. Demanding exponentially fewer queries compared to the end-to-end approach, prototypes can be instantiated to guide subsequent query-free training. For more potent efficacy, we develop a multi-relational extraction loss that trains the surrogate encoder to Discriminate mismatched embedding-prototype pairs while Aligning those matched ones in terms of both amplitude and angle. In this way, the trained surrogate encoder achieves state-of-the-art results across the board in various downstream datasets with limited queries. Moreover, RDA is shown to be robust to multiple widely-used defenses.


Wired Perspectives: Multi-View Wire Art Embraces Generative AI

arXiv.org Artificial Intelligence

Creating multi-view wire art (MVWA), a static 3D sculpture with diverse interpretations from different viewpoints, is a complex task even for skilled artists. In response, we present DreamWire, an AI system enabling everyone to craft MVWA easily. Users express their vision through text prompts or scribbles, freeing them from intricate 3D wire organisation. Our approach synergises 3D B\'ezier curves, Prim's algorithm, and knowledge distillation from diffusion models or their variants (e.g., ControlNet). This blend enables the system to represent 3D wire art, ensuring spatial continuity and overcoming data scarcity. Extensive evaluation and analysis are conducted to shed insight on the inner workings of the proposed system, including the trade-off between connectivity and visual aesthetics.


DiffTAD: Temporal Action Detection with Proposal Denoising Diffusion

arXiv.org Artificial Intelligence

We propose a new formulation of temporal action detection (TAD) with denoising diffusion, DiffTAD in short. Taking as input random temporal proposals, it can yield action proposals accurately given an untrimmed long video. This presents a generative modeling perspective, against previous discriminative learning manners. This capability is achieved by first diffusing the ground-truth proposals to random ones (i.e., the forward/noising process) and then learning to reverse the noising process (i.e., the backward/denoising process). Concretely, we establish the denoising process in the Transformer decoder (e.g., DETR) by introducing a temporal location query design with faster convergence in training. We further propose a cross-step selective conditioning algorithm for inference acceleration. Extensive evaluations on ActivityNet and THUMOS show that our DiffTAD achieves top performance compared to previous art alternatives. The code will be made available at https://github.com/sauradip/DiffusionTAD.


Softmax-free Linear Transformers

arXiv.org Artificial Intelligence

Vision transformers (ViTs) have pushed the state-of-the-art for visual perception tasks. The self-attention mechanism underpinning the strength of ViTs has a quadratic complexity in both computation and memory usage. This motivates the development of approximating the self-attention at linear complexity. However, an in-depth analysis in this work reveals that existing methods are either theoretically flawed or empirically ineffective for visual recognition. We identify that their limitations are rooted in the inheritance of softmax-based self-attention during approximations, that is, normalizing the scaled dot-product between token feature vectors using the softmax function. As preserving the softmax operation challenges any subsequent linearization efforts. By this insight, a family of Softmax-Free Transformers (SOFT) are proposed. Specifically, a Gaussian kernel function is adopted to replace the dot-product similarity, enabling a full self-attention matrix to be approximated under low-rank matrix decomposition. For computational robustness, we estimate the Moore-Penrose inverse using an iterative Newton-Raphson method in the forward process only, while calculating its theoretical gradients only once in the backward process. To further expand applicability (e.g., dense prediction tasks), an efficient symmetric normalization technique is introduced. Extensive experiments on ImageNet, COCO, and ADE20K show that our SOFT significantly improves the computational efficiency of existing ViT variants. With linear complexity, much longer token sequences are permitted by SOFT, resulting in superior trade-off between accuracy and complexity. Code and models are available at https://github.com/fudan-zvg/SOFT.


A Generalized Unbiased Risk Estimator for Learning with Augmented Classes

arXiv.org Artificial Intelligence

Machine learning approaches have achieved great performance on a variety of tasks, and most of them focus on the stationary learning environment. However, the learning environment in many real-world scenarios could be open and change gradually, which requires the learning approaches to have the ability of handling the distribution change in the non-stationary environment [1-4]. This paper considers a specific problem where the class distribution changes from the training phase to the test phase, called learning with augmented classes (LAC). In LAC, some augmented classes unobserved in the training phase might emerge in the test phase. In order to make accurate and reliable predictions, the learning model is required to distinguish augmented classes and keep good generalization performance over the test distribution. The major difficulty in LAC is how to exploit the relationships between known and augmented classes. To overcome this difficulty, various learning methods have been proposed. For example, by learning a compact geometric description of known classes to distinguish augmented classes that are far away from the description, the anomaly detection or novelty detection methods can be used (e.g., iForest [5], one-class SVM [6, 7], and kernel density estimation [8, 9]). By exploiting unlabeled data with the low-density separation assumption to adjust the classification decision boundary [10], the performance of LAC can be empirically improved.


ChiroDiff: Modelling chirographic data with Diffusion Models

arXiv.org Artificial Intelligence

Generative modelling over continuous-time geometric constructs, a.k.a such as handwriting, sketches, drawings etc., have been accomplished through autoregressive distributions. Such strictly-ordered discrete factorization however falls short of capturing key properties of chirographic data -- it fails to build holistic understanding of the temporal concept due to one-way visibility (causality). Consequently, temporal data has been modelled as discrete token sequences of fixed sampling rate instead of capturing the true underlying concept. In this paper, we introduce a powerful model-class namely "Denoising Diffusion Probabilistic Models" or DDPMs for chirographic data that specifically addresses these flaws. Our model named "ChiroDiff", being non-autoregressive, learns to capture holistic concepts and therefore remains resilient to higher temporal sampling rate up to a good extent. Moreover, we show that many important downstream utilities (e.g. conditional sampling, creative mixing) can be flexibly implemented using ChiroDiff. We further show some unique use-cases like stochastic vectorization, de-noising/healing, abstraction are also possible with this model-class. We perform quantitative and qualitative evaluation of our framework on relevant datasets and found it to be better or on par with competing approaches.


Multi-Modal Few-Shot Temporal Action Detection

arXiv.org Artificial Intelligence

Few-shot (FS) and zero-shot (ZS) learning are two different approaches for scaling temporal action detection (TAD) to new classes. The former adapts a pretrained vision model to a new task represented by as few as a single video per class, whilst the latter requires no training examples by exploiting a semantic description of the new class. In this work, we introduce a new multi-modality few-shot (MMFS) TAD problem, which can be considered as a marriage of FS-TAD and ZS-TAD by leveraging few-shot support videos and new class names jointly. To tackle this problem, we further introduce a novel MUlti-modality PromPt mETa-learning (MUPPET) method. This is enabled by efficiently bridging pretrained vision and language models whilst maximally reusing already learned capacity. Concretely, we construct multi-modal prompts by mapping support videos into the textual token space of a vision-language model using a meta-learned adapter-equipped visual semantics tokenizer. To tackle large intra-class variation, we further design a query feature regulation scheme. Extensive experiments on ActivityNetv1.3 and THUMOS14 demonstrate that our MUPPET outperforms state-of-the-art alternative methods, often by a large margin. We also show that our MUPPET can be easily extended to tackle the few-shot object detection problem and again achieves the state-of-the-art performance on MS-COCO dataset. The code will be available in https://github.com/sauradip/MUPPET


A Survey of Secure Computation Using Trusted Execution Environments

arXiv.org Artificial Intelligence

As an essential technology underpinning trusted computing, the trusted execution environment (TEE) allows one to launch computation tasks on both on- and off-premises data while assuring confidentiality and integrity. This article provides a systematic review and comparison of TEE-based secure computation protocols. We first propose a taxonomy that classifies secure computation protocols into three major categories, namely secure outsourced computation, secure distributed computation and secure multi-party computation. To enable a fair comparison of these protocols, we also present comprehensive assessment criteria with respect to four aspects: setting, methodology, security and performance. Based on these criteria, we review, discuss and compare the state-of-the-art TEE-based secure computation protocols for both general-purpose computation functions and special-purpose ones, such as privacy-preserving machine learning and encrypted database queries. To the best of our knowledge, this article is the first survey to review TEE-based secure computation protocols and the comprehensive comparison can serve as a guideline for selecting suitable protocols for deployment in practice. Finally, we also discuss several future research directions and challenges.


WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model

arXiv.org Artificial Intelligence

The fundamental goal of artificial intelligence (AI) is to mimic the core cognitive activities of human including perception, memory, and reasoning. Although tremendous success has been achieved in various AI research fields (e.g., computer vision and natural language processing), the majority of existing works only focus on acquiring single cognitive ability (e.g., image classification, reading comprehension, or visual commonsense reasoning). To overcome this limitation and take a solid step to artificial general intelligence (AGI), we develop a novel foundation model pre-trained with huge multimodal (visual and textual) data, which is able to be quickly adapted for a broad class of downstream cognitive tasks. Such a model is fundamentally different from the multimodal foundation models recently proposed in the literature that typically make strong semantic correlation assumption and expect exact alignment between image and text modalities in their pre-training data, which is often hard to satisfy in practice thus limiting their generalization abilities. To resolve this issue, we propose to pre-train our foundation model by self-supervised learning with weak semantic correlation data crawled from the Internet and show that state-of-the-art results can be obtained on a wide range of downstream tasks (both single-modal and cross-modal). Particularly, with novel model-interpretability tools developed in this work, we demonstrate that strong imagination ability (even with hints of commonsense) is now possessed by our foundation model. We believe our work makes a transformative stride towards AGI and will have broad impact on various AI+ fields (e.g., neuroscience and healthcare).