Wu, Ming
SamplingAug: On the Importance of Patch Sampling Augmentation for Single Image Super-Resolution
Wang, Shizun, Lu, Ming, Chen, Kaixin, Liu, Jiaming, Li, Xiaoqi, zhang, Chuang, Wu, Ming
With the development of Deep Neural Networks (DNNs), plenty of methods based on DNNs have been proposed for Single Image Super-Resolution (SISR). However, existing methods mostly train the DNNs on uniformly sampled LR-HR patch pairs, which makes them fail to fully exploit informative patches within the image. In this paper, we present a simple yet effective data augmentation method. We first devise a heuristic metric to evaluate the informative importance of each patch pair. In order to reduce the computational cost for all patch pairs, we further propose to optimize the calculation of our metric by integral image, achieving about two orders of magnitude speedup. The training patch pairs are sampled according to their informative importance with our method. Extensive experiments show our sampling augmentation can consistently improve the convergence and boost the performance of various SISR architectures, including EDSR, RCAN, RDN, SRCNN and ESPCN across different scaling factors (x2, x3, x4). Code is available at https://github.com/littlepure2333/SamplingAug
Adaptive Self-training for Few-shot Neural Sequence Labeling
Wang, Yaqing, Mukherjee, Subhabrata, Chu, Haoda, Tu, Yuancheng, Wu, Ming, Gao, Jing, Awadallah, Ahmed Hassan
Neural sequence labeling is an important technique employed for many Natural Language Processing (NLP) tasks, such as Named Entity Recognition (NER), slot tagging for dialog systems and semantic parsing. Large-scale pre-trained language models obtain very good performance on these tasks when fine-tuned on large amounts of task-specific labeled data. However, such large-scale labeled datasets are difficult to obtain for several tasks and domains due to the high cost of human annotation as well as privacy and data access constraints for sensitive user applications. This is exacerbated for sequence labeling tasks requiring such annotations at token-level. In this work, we develop techniques to address the label scarcity challenge for neural sequence labeling models. Specifically, we develop self-training and meta-learning techniques for few-shot training of neural sequence taggers, namely MetaST. While self-training serves as an effective mechanism to learn from large amounts of unlabeled data -- meta-learning helps in adaptive sample re-weighting to mitigate error propagation from noisy pseudo-labels. Extensive experiments on six benchmark datasets including two massive multilingual NER datasets and four slot tagging datasets for task-oriented dialog systems demonstrate the effectiveness of our method with around 10% improvement over state-of-the-art systems for the 10-shot setting.