Not enough data to create a plot.
Try a different view from the menu above.
Wu, Han
Semantic Role Labeling Guided Multi-turn Dialogue ReWriter
Xu, Kun, Tan, Haochen, Song, Linfeng, Wu, Han, Zhang, Haisong, Song, Linqi, Yu, Dong
For multi-turn dialogue rewriting, the capacity of effectively modeling the linguistic knowledge in dialog context and getting rid of the noises is essential to improve its performance. Existing attentive models attend to all words without prior focus, which results in inaccurate concentration on some dispensable words. In this paper, we propose to use semantic role labeling (SRL), which highlights the core semantic information of who did what to whom, to provide additional guidance for the rewriter model. Experiments show that this information significantly improves a RoBERTa-based model that already outperforms previous state-of-the-art systems.
Deep Technology Tracing for High-tech Companies
Wu, Han, Zhang, Kun, Lv, Guangyi, Liu, Qi, Yu, Runlong, Zhao, Weihao, Chen, Enhong, Ma, Jianhui
Technological change and innovation are vitally important, especially for high-tech companies. However, factors influencing their future research and development (R&D) trends are both complicated and various, leading it a quite difficult task to make technology tracing for high-tech companies. To this end, in this paper, we develop a novel data-driven solution, i.e., Deep Technology Forecasting (DTF) framework, to automatically find the most possible technology directions customized to each high-tech company. Specially, DTF consists of three components: Potential Competitor Recognition (PCR), Collaborative Technology Recognition (CTR), and Deep Technology Tracing (DTT) neural network. For one thing, PCR and CTR aim to capture competitive relations among enterprises and collaborative relations among technologies, respectively. For another, DTT is designed for modeling dynamic interactions between companies and technologies with the above relations involved. Finally, we evaluate our DTF framework on real-world patent data, and the experimental results clearly prove that DTF can precisely help to prospect future technology emphasis of companies by exploiting hybrid factors.
Long-term Joint Scheduling for Urban Traffic
Liang, Xianfeng, Wu, Likang, Chen, Joya, Liu, Yang, Yu, Runlong, Hou, Min, Wu, Han, Ye, Yuyang, Liu, Qi, Chen, Enhong
Recently, the traffic congestion in modern cities has become a growing worry for the residents. As presented in Baidu traffic report, the commuting stress index has reached surprising 1.973 in Beijing during rush hours, which results in longer trip time and increased vehicular queueing. Previous works have demonstrated that by reasonable scheduling, e.g, rebalancing bike-sharing systems and optimized bus transportation, the traffic efficiency could be significantly improved with little resource consumption. However, there are still two disadvantages that restrict their performance: (1) they only consider single scheduling in a short time, but ignoring the layout after first reposition, and (2) they only focus on the single transport. However, the multi-modal characteristics of urban public transportation are largely under-exploited. In this paper, we propose an efficient and economical multi-modal traffic scheduling scheme named JLRLS based on spatio -temporal prediction, which adopts reinforcement learning to obtain optimal long-term and joint schedule. In JLRLS, we combines multiple transportation to conduct scheduling by their own characteristics, which potentially helps the system to reach the optimal performance. Our implementation of an example by PaddlePaddle is available at https://github.com/bigdata-ustc/Long-term-Joint-Scheduling, with an explaining video at https://youtu.be/t5M2wVPhTyk.