Plotting

 Wu, Gangshan


RASA: Replace Anyone, Say Anything -- A Training-Free Framework for Audio-Driven and Universal Portrait Video Editing

arXiv.org Artificial Intelligence

Portrait video editing focuses on modifying specific attributes of portrait videos, guided by audio or video streams. Previous methods typically either concentrate on lip-region reenactment or require training specialized models to extract keypoints for motion transfer to a new identity. In this paper, we introduce a training-free universal portrait video editing framework that provides a versatile and adaptable editing strategy. This framework supports portrait appearance editing conditioned on the changed first reference frame, as well as lip editing conditioned on varied speech, or a combination of both. It is based on a Unified Animation Control (UAC) mechanism with source inversion latents to edit the entire portrait, including visual-driven shape control, audio-driven speaking control, and inter-frame temporal control. Furthermore, our method can be adapted to different scenarios by adjusting the initial reference frame, enabling detailed editing of portrait videos with specific head rotations and facial expressions. This comprehensive approach ensures a holistic and flexible solution for portrait video editing. The experimental results show that our model can achieve more accurate and synchronized lip movements for the lip editing task, as well as more flexible motion transfer for the appearance editing task. Demo is available at https://alice01010101.github.io/RASA/.


Tra-MoE: Learning Trajectory Prediction Model from Multiple Domains for Adaptive Policy Conditioning

arXiv.org Artificial Intelligence

Learning from multiple domains is a primary factor that influences the generalization of a single unified robot system. In this paper, we aim to learn the trajectory prediction model by using broad out-of-domain data to improve its performance and generalization ability. Trajectory model is designed to predict any-point trajectories in the current frame given an instruction and can provide detailed control guidance for robotic policy learning. To handle the diverse out-of-domain data distribution, we propose a sparsely-gated MoE (\textbf{Top-1} gating strategy) architecture for trajectory model, coined as \textbf{Tra-MoE}. The sparse activation design enables good balance between parameter cooperation and specialization, effectively benefiting from large-scale out-of-domain data while maintaining constant FLOPs per token. In addition, we further introduce an adaptive policy conditioning technique by learning 2D mask representations for predicted trajectories, which is explicitly aligned with image observations to guide action prediction more flexibly. We perform extensive experiments on both simulation and real-world scenarios to verify the effectiveness of Tra-MoE and adaptive policy conditioning technique. We also conduct a comprehensive empirical study to train Tra-MoE, demonstrating that our Tra-MoE consistently exhibits superior performance compared to the dense baseline model, even when the latter is scaled to match Tra-MoE's parameter count.


Spatiotemporal Predictive Pre-training for Robotic Motor Control

arXiv.org Artificial Intelligence

Robotic motor control necessitates the ability to predict the dynamics of environments and interaction objects. However, advanced self-supervised pre-trained visual representations (PVRs) in robotic motor control, leveraging large-scale egocentric videos, often focus solely on learning the static content features of sampled image frames. This neglects the crucial temporal motion clues in human video data, which implicitly contain key knowledge about sequential interacting and manipulating with the environments and objects. In this paper, we present a simple yet effective robotic motor control visual pre-training framework that jointly performs spatiotemporal prediction with dual decoders, utilizing large-scale video data, termed as \textbf{STP}. STP adheres to two key designs in a multi-task learning manner. First, we perform spatial prediction on the masked current frame for learning content features. Second, we utilize the future frame with an extremely high masking ratio as a condition, based on the masked current frame, to conduct temporal prediction of future frame for capturing motion features. This asymmetric masking and decoder architecture design is very efficient, ensuring that our representation focusing on motion information while capturing spatial details. We carry out the largest-scale BC evaluation of PVRs for robotic motor control to date, which encompasses 21 tasks within a real-world Franka robot arm and 5 simulated environments. Extensive experiments demonstrate the effectiveness of STP as well as unleash its generality and data efficiency by further post-pre-training and hybrid pre-training. Our code and weights will be released for further applications.


Transferring Foundation Models for Generalizable Robotic Manipulation

arXiv.org Artificial Intelligence

Improving the generalization capabilities of general-purpose robotic manipulation agents in the real world has long been a significant challenge. Existing approaches often rely on collecting large-scale robotic data which is costly and time-consuming, such as the RT-1 dataset. However, due to insufficient diversity of data, these approaches typically suffer from limiting their capability in open-domain scenarios with new objects, and diverse environments. In this paper, we propose a novel paradigm that effectively leverages language grounded segmentation mask generated by Internet-scale foundation models, to address a wide range of pick-and-place robot manipulation tasks. By integrating the mask modality, which incorporates semantic, geometric, and temporal correlation priors derived from vision foundation models, into the end-to-end policy model, our approach can effectively and robustly perceive object pose and enable sample-efficient generalization learning, including new object instances, semantic categories, and unseen backgrounds. We first introduce a series of foundation models to ground natural language demands across multiple tasks. Secondly, we develop a two-stream 2D policy model based on imitation learning, which utilizes raw images, object masks, and robot proprioception to predict robot actions. Extensive real-world experiments conducted on a Franka Emika robot arm demonstrate the effectiveness of our proposed paradigm. Demos are shown in YouTube (https://www.youtube.com/watch?v=MAcUPFBfRIw ).


LinK: Linear Kernel for LiDAR-based 3D Perception

arXiv.org Artificial Intelligence

Extending the success of 2D Large Kernel to 3D perception is challenging due to: 1. the cubically-increasing overhead in processing 3D data; 2. the optimization difficulties from data scarcity and sparsity. Previous work has taken the first step to scale up the kernel size from 3x3x3 to 7x7x7 by introducing block-shared weights. However, to reduce the feature variations within a block, it only employs modest block size and fails to achieve larger kernels like the 21x21x21. To address this issue, we propose a new method, called LinK, to achieve a wider-range perception receptive field in a convolution-like manner with two core designs. The first is to replace the static kernel matrix with a linear kernel generator, which adaptively provides weights only for non-empty voxels. The second is to reuse the pre-computed aggregation results in the overlapped blocks to reduce computation complexity. The proposed method successfully enables each voxel to perceive context within a range of 21x21x21. Extensive experiments on two basic perception tasks, 3D object detection and 3D semantic segmentation, demonstrate the effectiveness of our method. Notably, we rank 1st on the public leaderboard of the 3D detection benchmark of nuScenes (LiDAR track), by simply incorporating a LinK-based backbone into the basic detector, CenterPoint. We also boost the strong segmentation baseline's mIoU with 2.7% in the SemanticKITTI test set. Code is available at https://github.com/MCG-NJU/LinK.