Woltran, Stefan
Belief merging within fragments of propositional logic
Creignou, Nadia, Papini, Odile, Rümmele, Stefan, Woltran, Stefan
Recently, belief change within the framework of fragments of propositional logic has gained increasing attention. Previous works focused on belief contraction and belief revision on the Horn fragment. However, the problem of belief merging within fragments of propositional logic has been neglected so far. This paper presents a general approach to define new merging operators derived from existing ones such that the result of merging remains in the fragment under consideration. Our approach is not limited to the case of Horn fragment but applicable to any fragment of propositional logic characterized by a closure property on the sets of models of its formulae. We study the logical properties of the proposed operators in terms of satisfaction of merging postulates, considering in particular distance-based merging operators for Horn and Krom fragments.
Modularity Aspects of Disjunctive Stable Models
Janhunen, Tomi, Oikarinen, Emilia, Tompits, Hans, Woltran, Stefan
Practically all programming languages allow the programmer to split a program into several modules which brings along several advantages in software development. In this paper, we are interested in the area of answer-set programming where fully declarative and nonmonotonic languages are applied. In this context, obtaining a modular structure for programs is by no means straightforward since the output of an entire program cannot in general be composed from the output of its components. To better understand the effects of disjunctive information on modularity we restrict the scope of analysis to the case of disjunctive logic programs (DLPs) subject to stable-model semantics. We define the notion of a DLP-function, where a well-defined input/output interface is provided, and establish a novel module theorem which indicates the compositionality of stable-model semantics for DLP-functions. The module theorem extends the well-known splitting-set theorem and enables the decomposition of DLP-functions given their strongly connected components based on positive dependencies induced by rules. In this setting, it is also possible to split shared disjunctive rules among components using a generalized shifting technique. The concept of modular equivalence is introduced for the mutual comparison of DLP-functions using a generalization of a translation-based verification method.
Abstract Dialectical Frameworks Revisited
Brewka, Gerhard (Leipzig University) | Strass, Hannes (Leipzig University) | Ellmauthaler, Stefan (Leipzig University) | Wallner, Johannes Peter (Vienna University of Technology) | Woltran, Stefan (Vienna University of Technology)
We present various new concepts and results related to abstract dialectical frameworks (ADFs), a powerful generalization of Dung's argumentation frameworks (AFs). In particular, we show how the existing definitions of stable and preferred semantics which are restricted to the subcase of so-called bipolar ADFs can be improved and generalized to arbitrary frameworks. Furthermore, we introduce preference handling methods for ADFs, allowing for both reasoning with and about preferences. Finally, we present an implementation based on an encoding in answer set programming.
Abstract Preference Frameworks — a Unifying Perspective on Separability and Strong Equivalence
Faber, Wolfgang (University of Calabria) | Truszczyński, Mirosław (University of Kentucky) | Woltran, Stefan (Vienna University of Technology)
We introduce abstract preference frameworks to study general properties common across a variety of preference formalisms. In particular, we study strong equivalence in preference formalisms and their separability. We identify abstract postulates on preference frameworks, satisfied by most of the currently studied preference formalisms, that lead to characterizations of both properties of interest.
D-FLAT: Declarative Problem Solving Using Tree Decompositions and Answer-Set Programming
Bliem, Bernhard, Morak, Michael, Woltran, Stefan
In this work, we propose Answer-Set Programming (ASP) as a tool for rapid prototyping of dynamic programming algorithms based on tree decompositions. In fact, many such algorithms have been designed, but only a few of them found their way into implementation. The main obstacle is the lack of easy-to-use systems which (i) take care of building a tree decomposition and (ii) provide an interface for declarative specifications of dynamic programming algorithms. In this paper, we present D-FLAT, a novel tool that relieves the user of having to handle all the technical details concerned with parsing, tree decomposition, the handling of data structures, etc. Instead, it is only the dynamic programming algorithm itself which has to be specified in the ASP language. D-FLAT employs an ASP solver in order to compute the local solutions in the dynamic programming algorithm. In the paper, we give a few examples illustrating the use of D-FLAT and describe the main features of the system. Moreover, we report experiments which show that ASP-based D-FLAT encodings for some problems outperform monolithic ASP encodings on instances of small treewidth.
Tractable Answer-Set Programming with Weight Constraints: Bounded Treewidth is not Enough
Pichler, Reinhard, Rümmele, Stefan, Szeider, Stefan, Woltran, Stefan
Cardinality constraints or, more generally, weight constraints are well recognized as an important extension of answer-set programming. Clearly, all common algorithmic tasks related to programs with cardinality or weight constraints - like checking the consistency of a program - are intractable. Many intractable problems in the area of knowledge representation and reasoning have been shown to become linear time tractable if the treewidth of the programs or formulas under consideration is bounded by some constant. The goal of this paper is to apply the notion of treewidth to programs with cardinality or weight constraints and to identify tractable fragments. It will turn out that the straightforward application of treewidth to such class of programs does not suffice to obtain tractability. However, by imposing further restrictions, tractability can be achieved.
Strong Equivalence of Qualitative Optimization Problems
Faber, Wolfgang, Truszczyński, Mirosław, Woltran, Stefan
We introduce the framework of qualitative optimization problems (or, simply, optimization problems) to represent preference theories. The formalism uses separate modules to describe the space of outcomes to be compared (the generator) and the preferences on outcomes (the selector). We consider two types of optimization problems. They differ in the way the generator, which we model by a propositional theory, is interpreted: by the standard propositional logic semantics, and by the equilibrium-model (answer-set) semantics. Under the latter interpretation of generators, optimization problems directly generalize answer-set optimization programs proposed previously. We study strong equivalence of optimization problems, which guarantees their interchangeability within any larger context. We characterize several versions of strong equivalence obtained by restricting the class of optimization problems that can be used as extensions and establish the complexity of associated reasoning tasks. Understanding strong equivalence is essential for modular representation of optimization problems and rewriting techniques to simplify them without changing their inherent properties.
Making Use of Advances in Answer-Set Programming for Abstract Argumentation Systems
Dvořák, Wolfgang, Gaggl, Sarah Alice, Wallner, Johannes, Woltran, Stefan
Dung's famous abstract argumentation frameworks represent the core formalism for many problems and applications in the field of argumentation which significantly evolved within the last decade. Recent work in the field has thus focused on implementations for these frameworks, whereby one of the main approaches is to use Answer-Set Programming (ASP). While some of the argumentation semantics can be nicely expressed within the ASP language, others required rather cumbersome encoding techniques. Recent advances in ASP systems, in particular, the metasp optimization frontend for the ASP-package gringo/claspD provides direct commands to filter answer sets satisfying certain subset-minimality (or -maximality) constraints. This allows for much simpler encodings compared to the ones in standard ASP language. In this paper, we experimentally compare the original encodings (for the argumentation semantics based on preferred, semi-stable, and respectively, stage extensions) with new metasp encodings. Moreover, we provide novel encodings for the recently introduced resolution-based grounded semantics. Our experimental results indicate that the metasp approach works well in those cases where the complexity of the encoded problem is adequately mirrored within the metasp approach.
Representing Preferences Among Sets
Brewka, Gerhard (University of Leipzig) | Truszczynski, Miroslaw (University of Kentucky) | Woltran, Stefan (Vienna University of Technology)
We study methods to specify preferences among subsets of a set (a universe ). The methods we focus on are of two types. The first one assumes the universe comes with a preference relation on its elements and attempts to lift that relation to subsets of the universe. That approach has limited expressivity but results in orderings that capture interesting general preference principles. The second method consists of developing formalisms allowing the user to specify "atomic" improvements, and generating from them preferences on the powerset of the universe. We show that the particular formalism we propose is expressive enough to capture the lifted preference relations of the first approach, and generalizes propositional CP-nets. We discuss the importance of domain-independent methods for specifying preferences on sets for knowledge representation formalisms, selecting the formalism of argumentation frameworks as an illustrative example.