Winther, Ole
Ladder Variational Autoencoders
Sønderby, Casper Kaae, Raiko, Tapani, Maaløe, Lars, Sønderby, Søren Kaae, Winther, Ole
Variational Autoencoders are powerful models for unsupervised learning. However deep models with several layers of dependent stochastic variables are difficult to train which limits the improvements obtained using these highly expressive models. We propose a new inference model, the Ladder Variational Autoencoder, that recursively corrects the generative distribution by a data dependent approximate likelihood in a process resembling the recently proposed Ladder Network. We show that this model provides state of the art predictive log-likelihood and tighter log-likelihood lower bound compared to the purely bottom-up inference in layered Variational Autoencoders and other generative models. We provide a detailed analysis of the learned hierarchical latent representation and show that our new inference model is qualitatively different and utilizes a deeper more distributed hierarchy of latent variables. Finally, we observe that batch normalization and deterministic warm-up (gradually turning on the KL-term) are crucial for training variational models with many stochastic layers.
Bayesian leave-one-out cross-validation approximations for Gaussian latent variable models
Vehtari, Aki, Mononen, Tommi, Tolvanen, Ville, Sivula, Tuomas, Winther, Ole
The future predictive performance of a Bayesian model can be estimated using Bayesian cross-validation. In this article, we consider Gaussian latent variable models where the integration over the latent values is approximated using the Laplace method or expectation propagation (EP). We study the properties of several Bayesian leave-one-out (LOO) cross-validation approximations that in most cases can be computed with a small additional cost after forming the posterior approximation given the full data. Our main objective is to assess the accuracy of the approximative LOO cross-validation estimators. That is, for each method (Laplace and EP) we compare the approximate fast computation with the exact brute force LOO computation. Secondarily, we evaluate the accuracy of the Laplace and EP approximations themselves against a ground truth established through extensive Markov chain Monte Carlo simulation. Our empirical results show that the approach based upon a Gaussian approximation to the LOO marginal distribution (the so-called cavity distribution) gives the most accurate and reliable results among the fast methods.
Indexable Probabilistic Matrix Factorization for Maximum Inner Product Search
Fraccaro, Marco (Technical University of Denmark) | Paquet, Ulrich (Microsoft Research, Cambridge) | Winther, Ole (Technical University of Denmark)
The Maximum Inner Product Search (MIPS) problem, prevalent in matrix factorization-based recommender systems, scales linearly with the number of objects to score. Recent work has shown that clever post-processing steps can turn the MIPS problem into a nearest neighbour one, allowing sublinear retrieval time either through Locality Sensitive Hashing or various tree structures that partition the Euclidian space. This work shows that instead of employing post-processing steps, substantially faster retrieval times can be achieved for the same accuracy when inference is not decoupled from the indexing process. By framing matrix factorization to be natively indexable, so that any solution is immediately sublinearly searchable, we use the machinery of Machine Learning to best learn such a solution. We introduce Indexable Probabilistic Matrix Factorization (IPMF) to shift the traditional post-processing complexity into the training phase of the model. Its inference procedure is based on Geodesic Monte Carlo, and adds minimal additional computational cost to standard Monte Carlo methods for matrix factorization. By coupling inference and indexing in this way, we achieve more than a 50% improvement in retrieval time against two state of the art methods, for a given level of accuracy in the recommendations of two large-scale recommender systems.
Autoencoding beyond pixels using a learned similarity metric
Larsen, Anders Boesen Lindbo, Sønderby, Søren Kaae, Larochelle, Hugo, Winther, Ole
We present an autoencoder that leverages learned representations to better measure similarities in data space. By combining a variational autoencoder with a generative adversarial network we can use learned feature representations in the GAN discriminator as basis for the VAE reconstruction objective. Thereby, we replace element-wise errors with feature-wise errors to better capture the data distribution while offering invariance towards e.g. translation. We apply our method to images of faces and show that it outperforms VAEs with element-wise similarity measures in terms of visual fidelity. Moreover, we show that the method learns an embedding in which high-level abstract visual features (e.g. wearing glasses) can be modified using simple arithmetic.
Spatio-temporal Spike and Slab Priors for Multiple Measurement Vector Problems
Andersen, Michael Riis, Winther, Ole, Hansen, Lars Kai
We are interested in solving the multiple measurement vector (MMV) problem for instances, where the underlying sparsity pattern exhibit spatio-temporal structure motivated by the electroencephalogram (EEG) source localization problem. We propose a probabilistic model that takes this structure into account by generalizing the structured spike and slab prior and the associated Expectation Propagation inference scheme. Based on numerical experiments, we demonstrate the viability of the model and the approximate inference scheme.
Deep Belief Nets for Topic Modeling
Maaloe, Lars, Arngren, Morten, Winther, Ole
Applying traditional collaborative filtering to digital publishing is challenging because user data is very sparse due to the high volume of documents relative to the number of users. Content based approaches, on the other hand, is attractive because textual content is often very informative. In this paper we describe large-scale content based collaborative filtering for digital publishing. To solve the digital publishing recommender problem we compare two approaches: latent Dirichlet allocation (LDA) and deep belief nets (DBN) that both find low-dimensional latent representations for documents. Efficient retrieval can be carried out in the latent representation. We work both on public benchmarks and digital media content provided by Issuu, an online publishing platform. This article also comes with a newly developed deep belief nets toolbox for topic modeling tailored towards performance evaluation of the DBN model and comparisons to the LDA model.
Bayesian Inference for Structured Spike and Slab Priors
Andersen, Michael R., Winther, Ole, Hansen, Lars K.
Sparse signal recovery addresses the problem of solving underdetermined linear inverse problems subject to a sparsity constraint. We propose a novel prior formulation, the structured spike and slab prior, which allows to incorporate a priori knowledge of the sparsity pattern by imposing a spatial Gaussian process on the spike and slab probabilities. Thus, prior information on the structure of the sparsity pattern can be encoded using generic covariance functions. Furthermore, we provide a Bayesian inference scheme for the proposed model based on the expectation propagation framework. Using numerical experiments on synthetic data, we demonstrate the benefits of the model.
Scalable Bayesian Modelling of Paired Symbols
Paquet, Ulrich, Koenigstein, Noam, Winther, Ole
We present a novel, scalable and Bayesian approach to modelling the occurrence of pairs of symbols (i,j) drawn from a large vocabulary. Observed pairs are assumed to be generated by a simple popularity based selection process followed by censoring using a preference function. By basing inference on the well-founded principle of variational bounding, and using new site-independent bounds, we show how a scalable inference procedure can be obtained for large data sets. State of the art results are presented on real-world movie viewing data.
Perturbative Corrections for Approximate Inference in Gaussian Latent Variable Models
Opper, Manfred, Paquet, Ulrich, Winther, Ole
Expectation Propagation (EP) provides a framework for approximate inference. When the model under consideration is over a latent Gaussian field, with the approximation being Gaussian, we show how these approximations can systematically be corrected. A perturbative expansion is made of the exact but intractable correction, and can be applied to the model's partition function and other moments of interest. The correction is expressed over the higher-order cumulants which are neglected by EP's local matching of moments. Through the expansion, we see that EP is correct to first order. By considering higher orders, corrections of increasing polynomial complexity can be applied to the approximation. The second order provides a correction in quadratic time, which we apply to an array of Gaussian process and Ising models. The corrections generalize to arbitrarily complex approximating families, which we illustrate on tree-structured Ising model approximations. Furthermore, they provide a polynomial-time assessment of the approximation error. We also provide both theoretical and practical insights on the exactness of the EP solution.
Predictive Active Set Selection Methods for Gaussian Processes
Henao, Ricardo, Winther, Ole
We propose an active set selection framework for Gaussian process classification for cases when the dataset is large enough to render its inference prohibitive. Our scheme consists of a two step alternating procedure of active set update rules and hyperparameter optimization based upon marginal likelihood maximization. The active set update rules rely on the ability of the predictive distributions of a Gaussian process classifier to estimate the relative contribution of a datapoint when being either included or removed from the model. This means that we can use it to include points with potentially high impact to the classifier decision process while removing those that are less relevant. We introduce two active set rules based on different criteria, the first one prefers a model with interpretable active set parameters whereas the second puts computational complexity first, thus a model with active set parameters that directly control its complexity. We also provide both theoretical and empirical support for our active set selection strategy being a good approximation of a full Gaussian process classifier. Our extensive experiments show that our approach can compete with state-of-the-art classification techniques with reasonable time complexity. Source code publicly available at http://cogsys.imm.dtu.dk/passgp.