Plotting

 Winther, Ole


Ensemble Learning and Linear Response Theory for ICA

Neural Information Processing Systems

The naive mean-field approach fails in this case whereas linear response theory-which gives an improved estimate of covariances-is very efficient. The examples given are for sources without temporal correlations .


Ensemble Learning and Linear Response Theory for ICA

Neural Information Processing Systems

We propose a general Bayesian framework for performing independent (leA) which relies on ensemble learning and linearcomponent analysis response theory known from statistical physics. We apply it to both discrete and continuous sources. For the continuous source the underdetermined (overcomplete) case is studied. The naive mean-field approach fails in this case whereas linear response theory-which gives an improved estimate of covariances-is very efficient. The examples given are for sources without temporal correlations. However, this derivation can easily to treat temporal correlations. Finally, the frameworkbe extended of generating new leA algorithms without needingoffers a simple way to define the prior distribution of the sources explicitly.


Ensemble Learning and Linear Response Theory for ICA

Neural Information Processing Systems

The naive mean-field approach fails in this case whereas linear response theory-which gives an improved estimate of covariances-is very efficient. The examples given are for sources without temporal correlations .


Computing with Finite and Infinite Networks

Neural Information Processing Systems

Using statistical mechanics results, I calculate learning curves (average generalization error) for Gaussian processes (GPs) and Bayesian neural networks (NNs) used for regression. Applying the results to learning a teacher defined by a two-layer network, I can directly compare GP and Bayesian NN learning.


Computing with Finite and Infinite Networks

Neural Information Processing Systems

Using statistical mechanics results, I calculate learning curves (average generalization error) for Gaussian processes (GPs) and Bayesian neural networks (NNs) used for regression. Applying the results to learning a teacher defined by a two-layer network, I can directly compare GP and Bayesian NN learning.


Efficient Approaches to Gaussian Process Classification

Neural Information Processing Systems

The first two methods are related to mean field ideas known in Statistical Physics. The third approach is based on Bayesian online approach which was motivated by recent results in the Statistical Mechanics of Neural Networks. We present simulation results showing: 1. that the mean field Bayesian evidence may be used for hyperparameter tuning and 2. that the online approach may achieve a low training error fast. 1 Introduction Gaussian processes provide promising nonparametric Bayesian approaches to regression andclassification [2, 1].


Efficient Approaches to Gaussian Process Classification

Neural Information Processing Systems

The first two methods are related to mean field ideas known in Statistical Physics. The third approach is based on Bayesian online approach which was motivated by recent results in the Statistical Mechanics of Neural Networks. We present simulation results showing: 1. that the mean field Bayesian evidence may be used for hyperparameter tuning and 2. that the online approach may achieve a low training error fast. 1 Introduction Gaussian processes provide promising nonparametric Bayesian approaches to regression and classification [2, 1].


Mean Field Methods for Classification with Gaussian Processes

Neural Information Processing Systems

We discuss the application of TAP mean field methods known from the Statistical Mechanics of disordered systems to Bayesian classification models with Gaussian processes. In contrast to previous approaches, no knowledge about the distribution of inputs is needed. Simulation results for the Sonar data set are given.


Mean Field Methods for Classification with Gaussian Processes

Neural Information Processing Systems

We discuss the application of TAP mean field methods known from the Statistical Mechanics of disordered systems to Bayesian classification modelswith Gaussian processes. In contrast to previous approaches, noknowledge about the distribution of inputs is needed. Simulation results for the Sonar data set are given. They have been recently introduced into the Neural Computation community (Neal 1996, Williams & Rasmussen 1996, Mackay 1997). If we assume fields with zero prior mean, the statistics of h is entirely defined by the second order correlations C(s, S') E[h(s)h(S')], where E denotes expectations 310 MOpper and 0. Winther with respect to the prior.


A Mean Field Algorithm for Bayes Learning in Large Feed-forward Neural Networks

Neural Information Processing Systems

In the Bayes approach to statistical inference [Berger, 1985] one assumes that the prior uncertainty about parameters of an unknown data generating mechanism can be encoded in a probability distribution, the so called prior. Using the prior and the likelihood of the data given the parameters, the posterior distribution of the parameters can be derived from Bayes rule. From this posterior, various estimates for functions ofthe parameter, like predictions about unseen data, can be calculated. However, in general, those predictions cannot be realised by specific parameter values, but only by an ensemble average over parameters according to the posterior probability. Hence, exact implementations of Bayes method for neural networks require averages over network parameters which in general can be performed by time consuming 226 M. Opper and O. Winther Monte Carlo procedures.