Goto

Collaborating Authors

 Williamson, Robert C.


Splines, Rational Functions and Neural Networks

Neural Information Processing Systems

Connections between spline approximation, approximation with rational functions, and feedforward neural networks are studied. The potential improvement in the degree of approximation in going from single to two hidden layer networks is examined. Some results of Birman and Solomjak regarding the degree of approximation achievable when knot positions are chosen on the basis of the probability distribution of examples rather than the function values are extended.


Splines, Rational Functions and Neural Networks

Neural Information Processing Systems

Connections between spline approximation, approximation with rational functions, and feedforward neural networks are studied. The potential improvement in the degree of approximation in going from single to two hidden layer networks is examined. Some results of Birman and Solomjak regarding the degree of approximation achievable when knot positions are chosen on the basis of the probability distribution of examples rather than the function values are extended.


e-Entropy and the Complexity of Feedforward Neural Networks

Neural Information Processing Systems

We are concerned with the problem of the number of nodes needed in a feedforward neural network in order to represent a fUllction to within a specified accuracy.


e-Entropy and the Complexity of Feedforward Neural Networks

Neural Information Processing Systems

We are concerned with the problem of the number of nodes needed in a feedforward neural network in order to represent a fUllction to within a specified accuracy.


e-Entropy and the Complexity of Feedforward Neural Networks

Neural Information Processing Systems

We are concerned with the problem of the number of nodes needed in a feedforward neural network in order to represent a fUllction to within a specified accuracy.