Plotting

 Williams, Jason


Leveraging User Engagement Signals For Entity Labeling in a Virtual Assistant

arXiv.org Artificial Intelligence

Personal assistant AI systems such as Siri, Cortana, and Alexa have become widely used as a means to accomplish tasks through natural language commands. However, components in these systems generally rely on supervised machine learning algorithms that require large amounts of hand-annotated training data, which is expensive and time consuming to collect. The ability to incorporate unsupervised, weakly supervised, or distantly supervised data holds significant promise in overcoming this bottleneck. In this paper, we describe a framework that leverages user engagement signals (user behaviors that demonstrate a positive or negative response to content) to automatically create granular entity labels for training data augmentation. Strategies such as multi-task learning and validation using an external knowledge base are employed to incorporate the engagement annotated data and to boost the model's accuracy on a sequence labeling task. Our results show that learning from data automatically labeled by user engagement signals achieves significant accuracy gains in a production deep learning system, when measured on both the sequence labeling task as well as on user facing results produced by the system end-to-end. We believe this is the first use of user engagement signals to help generate training data for a sequence labeling task on a large scale, and can be applied in practical settings to speed up new feature deployment when little human annotated data is available.


The Second Conversational Intelligence Challenge (ConvAI2)

arXiv.org Artificial Intelligence

We describe the setting and results of the ConvAI2 NeurIPS competition that aims to further the state-of-the-art in open-domain chatbots. Some key takeaways from the competition are: (i) pretrained Transformer variants are currently the best performing models on this task, (ii) but to improve performance on multi-turn conversations with humans, future systems must go beyond single word metrics like perplexity to measure the performance across sequences of utterances (conversations) in terms of repetition, consistency and balance of dialogue acts (e.g. The Conversational Intelligence Challenge aims at finding approaches to creating highquality dialogue agents capable of meaningful open domain conversation. Today, the progress in the field is significantly hampered by the absence of established benchmark tasks for non-goal-oriented dialogue systems (chatbots) and solid evaluation criteria for automatic assessment of dialogue quality. The aim of this competition was therefore to establish a concrete scenario for testing chatbots that aim to engage humans, and become a standard evaluation tool in order to make such systems directly comparable, including open source datasets, evaluation code (both automatic evaluations and code to run the human evaluation on Mechanical Turk), model baselines and the winning model itself. Taking into account the results of the previous edition, this year we improved the task, the evaluation process, and the human conversationalists' experience. We did this in part by making the setup simpler for the competitors, and in part by making the conversations more engaging for humans. We provided a dataset from the beginning, Persona-Chat, whose training set consists of conversations between crowdworkers who were randomly paired and asked to act the part of a given provided persona (randomly assigned, and created by another set of crowdworkers). The paired workers were asked to chat naturally and to get to know each other during the conversation. This produces interesting and engaging conversations that learning agents can try to mimic.


Reports on the Twenty-First National Conference on Artificial Intelligence (AAAI-06) Workshop Program

AI Magazine

The Workshop program of the Twenty-First Conference on Artificial Intelligence was held July 16-17, 2006 in Boston, Massachusetts. The program was chaired by Joyce Chai and Keith Decker. The titles of the 17 workshops were AIDriven Technologies for Service-Oriented Computing; Auction Mechanisms for Robot Coordination; Cognitive Modeling and Agent-Based Social Simulations, Cognitive Robotics; Computational Aesthetics: Artificial Intelligence Approaches to Beauty and Happiness; Educational Data Mining; Evaluation Methods for Machine Learning; Event Extraction and Synthesis; Heuristic Search, Memory- Based Heuristics, and Their Applications; Human Implications of Human-Robot Interaction; Intelligent Techniques in Web Personalization; Learning for Search; Modeling and Retrieval of Context; Modeling Others from Observations; and Statistical and Empirical Approaches for Spoken Dialogue Systems.


Reports on the Twenty-First National Conference on Artificial Intelligence (AAAI-06) Workshop Program

AI Magazine

The Workshop program of the Twenty-First Conference on Artificial Intelligence was held July 16-17, 2006 in Boston, Massachusetts. The program was chaired by Joyce Chai and Keith Decker. The titles of the 17 workshops were AIDriven Technologies for Service-Oriented Computing; Auction Mechanisms for Robot Coordination; Cognitive Modeling and Agent-Based Social Simulations, Cognitive Robotics; Computational Aesthetics: Artificial Intelligence Approaches to Beauty and Happiness; Educational Data Mining; Evaluation Methods for Machine Learning; Event Extraction and Synthesis; Heuristic Search, Memory- Based Heuristics, and Their Applications; Human Implications of Human-Robot Interaction; Intelligent Techniques in Web Personalization; Learning for Search; Modeling and Retrieval of Context; Modeling Others from Observations; and Statistical and Empirical Approaches for Spoken Dialogue Systems.