Not enough data to create a plot.
Try a different view from the menu above.
Werner, Mariel
Defection-Free Collaboration between Competitors in a Learning System
Werner, Mariel, Karimireddy, Sai Praneeth, Jordan, Michael I.
We study collaborative learning systems in which the participants are competitors who will defect from the system if they lose revenue by collaborating. As such, we frame the system as a duopoly of competitive firms who are each engaged in training machine-learning models and selling their predictions to a market of consumers. We first examine a fully collaborative scheme in which both firms share their models with each other and show that this leads to a market collapse with the revenues of both firms going to zero. We next show that one-sided collaboration in which only the firm with the lower-quality model shares improves the revenue of both firms. Finally, we propose a more equitable, *defection-free* scheme in which both firms share with each other while losing no revenue, and we show that our algorithm converges to the Nash bargaining solution.
Provably Personalized and Robust Federated Learning
Werner, Mariel, He, Lie, Jordan, Michael, Jaggi, Martin, Karimireddy, Sai Praneeth
Identifying clients with similar objectives and learning a model-per-cluster is an intuitive and interpretable approach to personalization in federated learning. However, doing so with provable and optimal guarantees has remained an open challenge. We formalize this problem as a stochastic optimization problem, achieving optimal convergence rates for a large class of loss functions. We propose simple iterative algorithms which identify clusters of similar clients and train a personalized model-per-cluster, using local client gradients and flexible constraints on the clusters. The convergence rates of our algorithms asymptotically match those obtained if we knew the true underlying clustering of the clients and are provably robust in the Byzantine setting where some fraction of the clients are malicious.