Goto

Collaborating Authors

 Wen, Junjie


Language-Conditioned Robotic Manipulation with Fast and Slow Thinking

arXiv.org Artificial Intelligence

The language-conditioned robotic manipulation aims to transfer natural language instructions into executable actions, from simple pick-and-place to tasks requiring intent recognition and visual reasoning. Inspired by the dual process theory in cognitive science, which suggests two parallel systems of fast and slow thinking in human decision-making, we introduce Robotics with Fast and Slow Thinking (RFST), a framework that mimics human cognitive architecture to classify tasks and makes decisions on two systems based on instruction types. Our RFST consists of two key components: 1) an instruction discriminator to determine which system should be activated based on the current user instruction, and 2) a slow-thinking system that is comprised of a fine-tuned vision language model aligned with the policy networks, which allows the robot to recognize user intention or perform reasoning tasks. To assess our methodology, we built a dataset featuring real-world trajectories, capturing actions ranging from spontaneous impulses to tasks requiring deliberate contemplation. Our results, both in simulation and real-world scenarios, confirm that our approach adeptly manages intricate tasks that demand intent recognition and reasoning. The project is available at https://jlm-z.github.io/RSFT/


SyreaNet: A Physically Guided Underwater Image Enhancement Framework Integrating Synthetic and Real Images

arXiv.org Artificial Intelligence

Underwater image enhancement (UIE) is vital for high-level vision-related underwater tasks. Although learning-based UIE methods have made remarkable achievements in recent years, it's still challenging for them to consistently deal with various underwater conditions, which could be caused by: 1) the use of the simplified atmospheric image formation model in UIE may result in severe errors; 2) the network trained solely with synthetic images might have difficulty in generalizing well to real underwater images. In this work, we, for the first time, propose a framework \textit{SyreaNet} for UIE that integrates both synthetic and real data under the guidance of the revised underwater image formation model and novel domain adaptation (DA) strategies. First, an underwater image synthesis module based on the revised model is proposed. Then, a physically guided disentangled network is designed to predict the clear images by combining both synthetic and real underwater images. The intra- and inter-domain gaps are abridged by fully exchanging the domain knowledge. Extensive experiments demonstrate the superiority of our framework over other state-of-the-art (SOTA) learning-based UIE methods qualitatively and quantitatively. The code and dataset are publicly available at https://github.com/RockWenJJ/SyreaNet.git.


Learning to Detect Noisy Labels Using Model-Based Features

arXiv.org Artificial Intelligence

Label noise is ubiquitous in various machine learning scenarios such as self-labeling with model predictions and erroneous data annotation. Many existing approaches are based on heuristics such as sample losses, which might not be flexible enough to achieve optimal solutions. Meta learning based methods address this issue by learning a data selection function, but can be hard to optimize. In light of these pros and cons, we propose Selection-Enhanced Noisy label Training (SENT) that does not rely on meta learning while having the flexibility of being data-driven. SENT transfers the noise distribution to a clean set and trains a model to distinguish noisy labels from clean ones using model-based features. Empirically, on a wide range of tasks including text classification and speech recognition, SENT improves performance over strong baselines under the settings of self-training and label corruption.