Not enough data to create a plot.
Try a different view from the menu above.
Wen, Chengtao
Robotic Automation in Apparel Manufacturing: A Novel Approach to Fabric Handling and Sewing
Ajith, Abhiroop, Narayanan, Gokul, Zornow, Jonathan, Calle, Carlos, Lugo, Auralis Herrero, Rincon, Jose Luis Susa, Wen, Chengtao, Solowjow, Eugen
Sewing garments using robots has consistently posed a research challenge due to the inherent complexities in fabric manipulation. In this paper, we introduce an intelligent robotic automation system designed to address this issue. By employing a patented technique that temporarily stiffens garments, we eliminate the traditional necessity for fabric modeling. Our methodological approach is rooted in a meticulously designed three-stage pipeline: first, an accurate pose estimation of the cut fabric pieces; second, a procedure to temporarily join fabric pieces; and third, a closed-loop visual servoing technique for the sewing process. Demonstrating versatility across various fabric types, our approach has been successfully validated in practical settings, notably with cotton material at the Bluewater Defense production line and denim material at Levi's research facility. The techniques described in this paper integrate robotic mechanisms with traditional sewing machines, devising a real-time sewing algorithm, and providing hands-on validation through a collaborative robot setup.
Optimizing Multi-Touch Textile and Tactile Skin Sensing Through Circuit Parameter Estimation
Su, Bo Ying, Wu, Yuchen, Wen, Chengtao, Liu, Changliu
Tactile and textile skin technologies have become increasingly important for enhancing human-robot interaction and allowing robots to adapt to different environments. Despite notable advancements, there are ongoing challenges in skin signal processing, particularly in achieving both accuracy and speed in dynamic touch sensing. This paper introduces a new framework that poses the touch sensing problem as an estimation problem of resistive sensory arrays. Utilizing a Regularized Least Squares objective function which estimates the resistance distribution of the skin. We enhance the touch sensing accuracy and mitigate the ghosting effects, where false or misleading touches may be registered. Furthermore, our study presents a streamlined skin design that simplifies manufacturing processes without sacrificing performance. Experimental outcomes substantiate the effectiveness of our method, showing 26.9% improvement in multi-touch force-sensing accuracy for the tactile skin.
Robotic Defect Inspection with Visual and Tactile Perception for Large-scale Components
Agarwal, Arpit, Ajith, Abhiroop, Wen, Chengtao, Stryzheus, Veniamin, Miller, Brian, Chen, Matthew, Johnson, Micah K., Rincon, Jose Luis Susa, Rosca, Justinian, Yuan, Wenzhen
In manufacturing processes, surface inspection is a key requirement for quality assessment and damage localization. Due to this, automated surface anomaly detection has become a promising area of research in various industrial inspection systems. A particular challenge in industries with large-scale components, like aircraft and heavy machinery, is inspecting large parts with very small defect dimensions. Moreover, these parts can be of curved shapes. To address this challenge, we present a 2-stage multi-modal inspection pipeline with visual and tactile sensing. Our approach combines the best of both visual and tactile sensing by identifying and localizing defects using a global view (vision) and using the localized area for tactile scanning for identifying remaining defects. To benchmark our approach, we propose a novel real-world dataset with multiple metallic defect types per image, collected in the production environments on real aerospace manufacturing parts, as well as online robot experiments in two environments. Our approach is able to identify 85% defects using Stage I and identify 100% defects after Stage II. The dataset is publicly available at https://zenodo.org/record/8327713
Neural Subgraph Matching
Rex, null, Ying, null, Lou, Zhaoyu, You, Jiaxuan, Wen, Chengtao, Canedo, Arquimedes, Leskovec, Jure
Subgraph matching is the problem of determining the presence of a given query graph in a large target graph. Despite being an NPcomplete problem, the subgraph matching problem is crucial in domains ranging from network science and database systems to biochemistry and cognitive science. However, existing techniques based on combinatorial matching and integer programming cannot handle matching problems with both large target and query graphs. Here we propose NeuroMatch, an accurate, efficient, and robust neural approach to subgraph matching. Trained to capture geometric constraints corresponding to subgraph relations, NeuroMatch then efficiently performs subgraph matching directly in the embedding space. Experiments demonstrate that NeuroMatch is 100x faster than existing combinatorial approaches and 18% more accurate than existing approximate subgraph matching methods. Given a query graph, the problem of subgraph isomorphism matching is to determine if a query graph is isomorphic to a subgraph of a large target graph. If the graphs include node and edge features, both the topology as well as the features should be matched. Subgraph matching is a crucial problem in many biology, social network and knowledge graph applications (Gentner, 1983; Raymond et al., 2002; Yang & Sze, 2007; Dai et al., 2019). For example, in social networks and biomedical network science, researchers investigate important subgraphs by counting them in a given network (Alon et al., 2008). In knowledge graphs, common substructures are extracted by querying them in the larger target graph (Gentner, 1983; Plotnick, 1997).