Not enough data to create a plot.
Try a different view from the menu above.
Welling, Max
Efficient Gradient-Based Inference through Transformations between Bayes Nets and Neural Nets
Kingma, Diederik P., Welling, Max
Hierarchical Bayesian networks and neural networks with stochastic hidden units are commonly perceived as two separate types of models. We show that either of these types of models can often be transformed into an instance of the other, by switching between centered and differentiable non-centered parameterizations of the latent variables. The choice of parameterization greatly influences the efficiency of gradient-based posterior inference; we show that they are often complementary to eachother, we clarify when each parameterization is preferred and show how inference can be made robust. In the non-centered form, a simple Monte Carlo estimator of the marginal likelihood can be used for learning the parameters. Theoretical results are supported by experiments.
Semi-supervised Learning with Deep Generative Models
Kingma, Durk P., Mohamed, Shakir, Rezende, Danilo Jimenez, Welling, Max
The ever-increasing size of modern data sets combined with the difficulty of obtaining label information has made semi-supervised learning one of the problems of significant practical importance in modern data analysis. We revisit the approach to semi-supervised learning with generative models and develop new models that allow for effective generalisation from small labelled data sets to large unlabelled ones. Generative approaches have thus far been either inflexible, inefficient or non-scalable. We show that deep generative models and approximate Bayesian inference exploiting recent advances in variational methods can be used to provide significant improvements, making generative approaches highly competitive for semi-supervised learning.
POPE: Post Optimization Posterior Evaluation of Likelihood Free Models
Meeds, Edward, Chiang, Michael, Lee, Mary, Cinquin, Olivier, Lowengrub, John, Welling, Max
In many domains, scientists build complex simulators of natural phenomena that encode their hypotheses about the underlying processes. These simulators can be deterministic or stochastic, fast or slow, constrained or unconstrained, and so on. Optimizing the simulators with respect to a set of parameter values is common practice, resulting in a single parameter setting that minimizes an objective subject to constraints. We propose a post optimization posterior analysis that computes and visualizes all the models that can generate equally good or better simulation results, subject to constraints. These optimization posteriors are desirable for a number of reasons among which easy interpretability, automatic parameter sensitivity and correlation analysis and posterior predictive analysis. We develop a new sampling framework based on approximate Bayesian computation (ABC) with one-sided kernels. In collaboration with two groups of scientists we applied POPE to two important biological simulators: a fast and stochastic simulator of stem-cell cycling and a slow and deterministic simulator of tumor growth patterns.
Semi-Supervised Learning with Deep Generative Models
Kingma, Diederik P., Rezende, Danilo J., Mohamed, Shakir, Welling, Max
The ever-increasing size of modern data sets combined with the difficulty of obtaining label information has made semi-supervised learning one of the problems of significant practical importance in modern data analysis. We revisit the approach to semi-supervised learning with generative models and develop new models that allow for effective generalisation from small labelled data sets to large unlabelled ones. Generative approaches have thus far been either inflexible, inefficient or non-scalable. We show that deep generative models and approximate Bayesian inference exploiting recent advances in variational methods can be used to provide significant improvements, making generative approaches highly competitive for semi-supervised learning.
Bayesian Structure Learning for Markov Random Fields with a Spike and Slab Prior
Chen, Yutian, Welling, Max
In recent years a number of methods have been developed for automatically learning the (sparse) connectivity structure of Markov Random Fields. These methods are mostly based on L1-regularized optimization which has a number of disadvantages such as the inability to assess model uncertainty and expensive crossvalidation to find the optimal regularization parameter. Moreover, the model's predictive performance may degrade dramatically with a suboptimal value of the regularization parameter (which is sometimes desirable to induce sparseness). We propose a fully Bayesian approach based on a "spike and slab" prior (similar to L0 regularization) that does not suffer from these shortcomings. We develop an approximate MCMC method combining Langevin dynamics and reversible jump MCMC to conduct inference in this model. Experiments show that the proposed model learns a good combination of the structure and parameter values without the need for separate hyper-parameter tuning. Moreover, the model's predictive performance is much more robust than L1-based methods with hyper-parameter settings that induce highly sparse model structures.
Auto-Encoding Variational Bayes
Kingma, Diederik P, Welling, Max
How can we perform efficient inference and learning in directed probabilistic models, in the presence of continuous latent variables with intractable posterior distributions, and large datasets? We introduce a stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case. Our contributions is two-fold. First, we show that a reparameterization of the variational lower bound yields a lower bound estimator that can be straightforwardly optimized using standard stochastic gradient methods. Second, we show that for i.i.d. datasets with continuous latent variables per datapoint, posterior inference can be made especially efficient by fitting an approximate inference model (also called a recognition model) to the intractable posterior using the proposed lower bound estimator. Theoretical advantages are reflected in experimental results.
Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget
Korattikara, Anoop, Chen, Yutian, Welling, Max
Can we make Bayesian posterior MCMC sampling more efficient when faced with very large datasets? We argue that computing the likelihood for N datapoints in the Metropolis-Hastings (MH) test to reach a single binary decision is computationally inefficient. We introduce an approximate MH rule based on a sequential hypothesis test that allows us to accept or reject samples with high confidence using only a fraction of the data required for the exact MH rule. While this method introduces an asymptotic bias, we show that this bias can be controlled and is more than offset by a decrease in variance due to our ability to draw more samples per unit of time.
GPS-ABC: Gaussian Process Surrogate Approximate Bayesian Computation
Meeds, Edward, Welling, Max
Scientists often express their understanding of the world through a computationally demanding simulation program. Analyzing the posterior distribution of the parameters given observations (the inverse problem) can be extremely challenging. The Approximate Bayesian Computation (ABC) framework is the standard statistical tool to handle these likelihood free problems, but they require a very large number of simulations. In this work we develop two new ABC sampling algorithms that significantly reduce the number of simulations necessary for posterior inference. Both algorithms use confidence estimates for the accept probability in the Metropolis Hastings step to adaptively choose the number of necessary simulations. Our GPS-ABC algorithm stores the information obtained from every simulation in a Gaussian process which acts as a surrogate function for the simulated statistics. Experiments on a challenging realistic biological problem illustrate the potential of these algorithms.
Herded Gibbs Sampling
Bornn, Luke, Chen, Yutian, de Freitas, Nando, Eskelin, Mareija, Fang, Jing, Welling, Max
The Gibbs sampler is one of the most popular algorithms for inference in statistical models. In this paper, we introduce a herding variant of this algorithm, called herded Gibbs, that is entirely deterministic. We prove that herded Gibbs has an $O(1/T)$ convergence rate for models with independent variables and for fully connected probabilistic graphical models. Herded Gibbs is shown to outperform Gibbs in the tasks of image denoising with MRFs and named entity recognition with CRFs. However, the convergence for herded Gibbs for sparsely connected probabilistic graphical models is still an open problem.
Belief Optimization for Binary Networks: A Stable Alternative to Loopy Belief Propagation
Welling, Max, Teh, Yee Whye
We present a novel inference algorithm for arbitrary, binary, undirected graphs. Unlike loopy belief propagation, which iterates fixed point equations, we directly descend on the Bethe free energy. The algorithm consists of two phases, first we update the pairwise probabilities, given the marginal probabilities at each unit,using an analytic expression. Next, we update the marginal probabilities, given the pairwise probabilities by following the negative gradient of the Bethe free energy. Both steps are guaranteed to decrease the Bethe free energy, and since it is lower bounded, the algorithm is guaranteed to converge to a local minimum. We also show that the Bethe free energy is equal to the TAP free energy up to second order in the weights. In experiments we confirm that when belief propagation converges it usually finds identical solutions as our belief optimization method. However, in cases where belief propagation fails to converge, belief optimization continues to converge to reasonable beliefs. The stable nature of belief optimization makes it ideally suited for learning graphical models from data.