Goto

Collaborating Authors

 Welleck, Sean


A Survey of Deep Learning for Mathematical Reasoning

arXiv.org Artificial Intelligence

Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.


Self-Refine: Iterative Refinement with Self-Feedback

arXiv.org Artificial Intelligence

Like humans, large language models (LLMs) do not always generate the best output on their first try. Motivated by how humans refine their written text, we introduce Self-Refine, an approach for improving initial outputs from LLMs through iterative feedback and refinement. The main idea is to generate an initial output using an LLMs; then, the same LLMs provides feedback for its output and uses it to refine itself, iteratively. Self-Refine does not require any supervised training data, additional training, or reinforcement learning, and instead uses a single LLM as the generator, refiner, and feedback provider. We evaluate Self-Refine across 7 diverse tasks, ranging from dialog response generation to mathematical reasoning, using state-of-the-art (GPT-3.5, ChatGPT, and GPT-4) LLMs. Across all evaluated tasks, outputs generated with Self-Refine are preferred by humans and automatic metrics over those generated with the same LLM using conventional one-step generation, improving by ~20% absolute on average in task performance. Our work demonstrates that even state-of-the-art LLMs like GPT-4 can be further improved at test time using our simple, standalone approach.


Lila: A Unified Benchmark for Mathematical Reasoning

arXiv.org Artificial Intelligence

Mathematical reasoning skills are essential for general-purpose intelligent systems to perform tasks from grocery shopping to climate modeling. Towards evaluating and improving AI systems in this domain, we propose LILA, a unified mathematical reasoning benchmark consisting of 23 diverse tasks along four dimensions: (i) mathematical abilities e.g., arithmetic, calculus (ii) language format e.g., question-answering, fill-in-the-blanks (iii) language diversity e.g., no language, simple language (iv) external knowledge e.g., commonsense, physics. We construct our benchmark by extending 20 datasets benchmark by collecting task instructions and solutions in the form of Python programs, thereby obtaining explainable solutions in addition to the correct answer. We additionally introduce two evaluation datasets to measure out-of-distribution performance and robustness to language perturbation. Finally, we introduce BHASKARA, a general-purpose mathematical reasoning model trained on LILA. Importantly, we find that multi-tasking leads to significant improvements (average relative improvement of 21.83% F1 score vs. single-task models), while the best performing model only obtains 60.40%, indicating the room for improvement in general mathematical reasoning and understanding.


Draft, Sketch, and Prove: Guiding Formal Theorem Provers with Informal Proofs

arXiv.org Artificial Intelligence

The formalization of existing mathematical proofs is a notoriously difficult process. Despite decades of research on automation and proof assistants, writing formal proofs remains arduous and only accessible to a few experts. While previous studies to automate formalization focused on powerful search algorithms, no attempts were made to take advantage of available informal proofs. In this work, we introduce Draft, Sketch, and Prove (DSP), a method that maps informal proofs to formal proof sketches, and uses the sketches to guide an automated prover by directing its search to easier sub-problems. We investigate two relevant setups where informal proofs are either written by humans or generated by a language model. Our experiments and ablation studies show that large language models are able to produce well-structured formal sketches that follow the same reasoning steps as the informal proofs. Guiding an automated prover with these sketches enhances its performance from 20.9% to 39.3% on a collection of mathematical competition problems.


Symbolic Knowledge Distillation: from General Language Models to Commonsense Models

arXiv.org Artificial Intelligence

The common practice for training commonsense models has gone from-human-to-corpus-to-machine: humans author commonsense knowledge graphs in order to train commonsense models. In this work, we investigate an alternative, from-machine-to-corpus-to-machine: general language models author these commonsense knowledge graphs to train commonsense models. Our study leads to a new framework, Symbolic Knowledge Distillation. As with prior art in Knowledge Distillation (Hinton et al., 2015), our approach uses larger models to teach smaller models. A key difference is that we distill knowledge symbolically-as text-in addition to the neural model. We also distill only one aspect-the commonsense of a general language model teacher, allowing the student to be a different type, a commonsense model. Altogether, we show that careful prompt engineering and a separately trained critic model allow us to selectively distill high-quality causal commonsense from GPT-3, a general language model. Empirical results demonstrate that, for the first time, a human-authored commonsense knowledge graph is surpassed by our automatically distilled variant in all three criteria: quantity, quality, and diversity. In addition, it results in a neural commonsense model that surpasses the teacher model's commonsense capabilities despite its 100x smaller size. We apply this to the ATOMIC resource, and share our new symbolic knowledge graph and commonsense models.


Generating Sequences by Learning to Self-Correct

arXiv.org Artificial Intelligence

Sequence generation applications require satisfying semantic constraints, such as ensuring that programs are correct, using certain keywords, or avoiding undesirable content. Language models, whether fine-tuned or prompted with few-shot demonstrations, frequently violate these constraints, and lack a mechanism to iteratively revise their outputs. Moreover, some powerful language models are of extreme scale or inaccessible, making it inefficient, if not infeasible, to update their parameters for task-specific adaptation. We present Self-Correction, an approach that decouples an imperfect base generator (an off-the-shelf language model or supervised sequence-to-sequence model) from a separate corrector that learns to iteratively correct imperfect generations. To train the corrector, we propose an online training procedure that can use either scalar or natural language feedback on intermediate imperfect generations. We show that Self-Correction improves upon the base generator in three diverse generation tasks - mathematical program synthesis, lexically-constrained generation, and toxicity control - even when the corrector is much smaller than the base generator.


Divergence Frontiers for Generative Models: Sample Complexity, Quantization Level, and Frontier Integral

arXiv.org Machine Learning

The spectacular success of deep generative models calls for quantitative tools to measure their statistical performance. Divergence frontiers have recently been proposed as an evaluation framework for generative models, due to their ability to measure the quality-diversity trade-off inherent to deep generative modeling. However, the statistical behavior of divergence frontiers estimated from data remains unknown to this day. In this paper, we establish non-asymptotic bounds on the sample complexity of the plug-in estimator of divergence frontiers. Along the way, we introduce a novel integral summary of divergence frontiers. We derive the corresponding non-asymptotic bounds and discuss the choice of the quantization level by balancing the two types of approximation errors arisen from its computation. We also augment the divergence frontier framework by investigating the statistical performance of smoothed distribution estimators such as the Good-Turing estimator. We illustrate the theoretical results with numerical examples from natural language processing and computer vision.


MLE-guided parameter search for task loss minimization in neural sequence modeling

arXiv.org Machine Learning

Neural autoregressive sequence models are used to generate sequences in a variety of natural language processing (NLP) tasks, where they are evaluated according to sequence-level task losses. These models are typically trained with maximum likelihood estimation, which ignores the task loss, yet empirically performs well as a surrogate objective. Typical approaches to directly optimizing the task loss such as policy gradient and minimum risk training are based around sampling in the sequence space to obtain candidate update directions that are scored based on the loss of a single sequence. In this paper, we develop an alternative method based on random search in the parameter space that leverages access to the maximum likelihood gradient. We propose maximum likelihood guided parameter search (MGS), which samples from a distribution over update directions that is a mixture of random search around the current parameters and around the maximum likelihood gradient, with each direction weighted by its improvement in the task loss. MGS shifts sampling to the parameter space, and scores candidates using losses that are pooled from multiple sequences. Our experiments show that MGS is capable of optimizing sequence-level losses, with substantial reductions in repetition and non-termination in sequence completion, and similar improvements to those of minimum risk training in machine translation.


Saliency-based Sequential Image Attention with Multiset Prediction

Neural Information Processing Systems

Central to models of human visual attention is the saliency map. We propose a hierarchical visual architecture that operates on a saliency map and uses a novel attention mechanism to sequentially focus on salient regions and take additional glimpses within those regions. The architecture is motivated by human visual attention, and is used for multi-label image classification on a novel multiset task, demonstrating that it achieves high precision and recall while localizing objects with its attention. Unlike conventional multi-label image classification models, the model supports multiset prediction due to a reinforcement-learning based training process that allows for arbitrary label permutation and multiple instances per label. Papers published at the Neural Information Processing Systems Conference.


Neural Text Generation with Unlikelihood Training

arXiv.org Machine Learning

Neural text generation is a key tool in natural language applications, but it is well known there are major problems at its core. In particular, standard likelihood training and decoding leads to dull and repetitive responses. While some post-hoc fixes have been proposed, in particular top-k and nucleus sampling, they do not address the fact that the token-level probabilities predicted by the model itself are poor. In this paper we show that the likelihood objective itself is at fault, resulting in a model that assigns too much probability to sequences that contain repeats and frequent words unlike the human training distribution. We propose a new objective, unlikelihood training, which forces unlikely generations to be assigned lower probability by the model. We show that both token and sequence level unlikelihood training give less repetitive, less dull text while maintaining perplexity, giving far superior generations using standard greedy or beam search. Our approach provides a strong alternative to traditional training.