Not enough data to create a plot.
Try a different view from the menu above.
Weinmann, Marcel
OpenLiDARMap: Zero-Drift Point Cloud Mapping using Map Priors
Kulmer, Dominik, Leitenstern, Maximilian, Weinmann, Marcel, Lienkamp, Markus
Accurate localization is a critical component of mobile autonomous systems, especially in Global Navigation Satellite Systems (GNSS)-denied environments where traditional methods fail. In such scenarios, environmental sensing is essential for reliable operation. However, approaches such as LiDAR odometry and Simultaneous Localization and Mapping (SLAM) suffer from drift over long distances, especially in the absence of loop closures. Map-based localization offers a robust alternative, but the challenge lies in creating and georeferencing maps without GNSS support. To address this issue, we propose a method for creating georeferenced maps without GNSS by using publicly available data, such as building footprints and surface models derived from sparse aerial scans. Our approach integrates these data with onboard LiDAR scans to produce dense, accurate, georeferenced 3D point cloud maps. By combining an Iterative Closest Point (ICP) scan-to-scan and scan-to-map matching strategy, we achieve high local consistency without suffering from long-term drift. Thus, we eliminate the reliance on GNSS for the creation of georeferenced maps. The results demonstrate that LiDAR-only mapping can produce accurate georeferenced point cloud maps when augmented with existing map priors.
FlexCloud: Direct, Modular Georeferencing and Drift-Correction of Point Cloud Maps
Leitenstern, Maximilian, Alten, Marko, Bolea-Schaser, Christian, Kulmer, Dominik, Weinmann, Marcel, Lienkamp, Markus
Current software stacks for real-world applications of autonomous driving leverage map information to ensure reliable localization, path planning, and motion prediction. An important field of research is the generation of point cloud maps, referring to the topic of simultaneous localization and mapping (SLAM). As most recent developments do not include global position data, the resulting point cloud maps suffer from internal distortion and missing georeferencing, preventing their use for map-based localization approaches. Therefore, we propose FlexCloud for an automatic georeferencing of point cloud maps created from SLAM. Our approach is designed to work modularly with different SLAM methods, utilizing only the generated local point cloud map and its odometry. Using the corresponding GNSS positions enables direct georeferencing without additional control points. By leveraging a 3D rubber-sheet transformation, we can correct distortions within the map caused by long-term drift while maintaining its structure. Our approach enables the creation of consistent, globally referenced point cloud maps from data collected by a mobile mapping system (MMS). The source code of our work is available at https://github.com/TUMFTM/FlexCloud.