Goto

Collaborating Authors

 Wei, Ying


Learning to Transfer

arXiv.org Machine Learning

Transfer learning borrows knowledge from a source domain to facilitate learning in a target domain. Two primary issues to be addressed in transfer learning are what and how to transfer. For a pair of domains, adopting different transfer learning algorithms results in different knowledge transferred between them. To discover the optimal transfer learning algorithm that maximally improves the learning performance in the target domain, researchers have to exhaustively explore all existing transfer learning algorithms, which is computationally intractable. As a trade-off, a sub-optimal algorithm is selected, which requires considerable expertise in an ad-hoc way. Meanwhile, it is widely accepted in educational psychology that human beings improve transfer learning skills of deciding what to transfer through meta-cognitive reflection on inductive transfer learning practices. Motivated by this, we propose a novel transfer learning framework known as Learning to Transfer (L2T) to automatically determine what and how to transfer are the best by leveraging previous transfer learning experiences. We establish the L2T framework in two stages: 1) we first learn a reflection function encrypting transfer learning skills from experiences; and 2) we infer what and how to transfer for a newly arrived pair of domains by optimizing the reflection function. Extensive experiments demonstrate the L2T's superiority over several state-of-the-art transfer learning algorithms and its effectiveness on discovering more transferable knowledge.


Instilling Social to Physical: Co-Regularized Heterogeneous Transfer Learning

AAAI Conferences

Ubiquitous computing tasks, such as human activity recognition (HAR), are enabling a wide spectrum of applications, ranging from healthcare to environment monitoring. The success of a ubiquitous computing task relies on sufficient physical sensor data with groundtruth labels, which are always scarce due to the expensive annotating process. Meanwhile, social media platforms provide a lot of social or semantic context information. People share what they are doing and where they are frequently in the messages they post. This rich set of socially shared activities motivates us to transfer knowledge from social media to address the sparsity issue of labelled physical sensor data. In order to transfer the knowledge of social and semantic context, we propose a Co-Regularized Heterogeneous Transfer Learning (CoHTL) model, which builds a common semantic space derived from two heterogeneous domains. Our proposed method outperforms state-of-the-art methods on two ubiquitous computing tasks, namely human activity recognition and region function discovery.