Wei, Ying
Graph Few-shot Learning via Knowledge Transfer
Yao, Huaxiu, Zhang, Chuxu, Wei, Ying, Jiang, Meng, Wang, Suhang, Huang, Junzhou, Chawla, Nitesh V., Li, Zhenhui
Towards the challenging problem of semi-supervised node classification, there have been extensive studies. As a frontier, Graph Neural Networks (GNNs) have aroused great interest recently, which update the representation of each node by aggregating information of its neighbors. However, most GNNs have shallow layers with a limited receptive field and may not achieve satisfactory performance especially when the number of labeled nodes is quite small. To address this challenge, we innovatively propose a graph few-shot learning (GFL) algorithm that incorporates prior knowledge learned from auxiliary graphs to improve classification accuracy on the target graph. Specifically, a transferable metric space characterized by a node embedding and a graph-specific prototype embedding function is shared between auxiliary graphs and the target, facilitating the transfer of structural knowledge. Extensive experiments and ablation studies on four real-world graph datasets demonstrate the effectiveness of our proposed model.
Transferable Neural Processes for Hyperparameter Optimization
Wei, Ying, Zhao, Peilin, Yao, Huaxiu, Huang, Junzhou
Automated machine learning aims to automate the whole process of machine learning, including model configuration. In this paper, we focus on automated hyperparameter optimization (HPO) based on sequential model-based optimization (SMBO). Though conventional SMBO algorithms work well when abundant HPO trials are available, they are far from satisfactory in practical applications where a trial on a huge dataset may be so costly that an optimal hyperparameter configuration is expected to return in as few trials as possible. Observing that human experts draw on their expertise in a machine learning model by trying configurations that once performed well on other datasets, we are inspired to speed up HPO by transferring knowledge from historical HPO trials on other datasets. We propose an end-to-end and efficient HPO algorithm named as Transfer Neural Processes (TNP), which achieves transfer learning by incorporating trials on other datasets, initializing the model with well-generalized parameters, and learning an initial set of hyperparameters to evaluate. Experiments on extensive OpenML datasets and three computer vision datasets show that the proposed model can achieve state-of-the-art performance in at least one order of magnitude less trials.
Hierarchically Structured Meta-learning
Yao, Huaxiu, Wei, Ying, Huang, Junzhou, Li, Zhenhui
In order to learn quickly with few samples, meta-learning utilizes prior knowledge learned from previous tasks. However, a critical challenge in meta-learning is task uncertainty and heterogeneity, which can not be handled via globally sharing knowledge among tasks. In this paper, based on gradient-based meta-learning, we propose a hierarchically structured meta-learning (HSML) algorithm that explicitly tailors the transferable knowledge to different clusters of tasks. Inspired by the way human beings organize knowledge, we resort to a hierarchical task clustering structure to cluster tasks. As a result, the proposed approach not only addresses the challenge via the knowledge customization to different clusters of tasks, but also preserves knowledge generalization among a cluster of similar tasks. To tackle the changing of task relationship, in addition, we extend the hierarchical structure to a continual learning environment. The experimental results show that our approach can achieve state-of-the-art performance in both toy-regression and few-shot image classification problems.
Learning from Multiple Cities: A Meta-Learning Approach for Spatial-Temporal Prediction
Yao, Huaxiu, Liu, Yiding, Wei, Ying, Tang, Xianfeng, Li, Zhenhui
Spatial-temporal prediction is a fundamental problem for constructing smart city, which is useful for tasks such as traffic control, taxi dispatching, and environmental policy making. Due to data collection mechanism, it is common to see data collection with unbalanced spatial distributions. For example, some cities may release taxi data for multiple years while others only release a few days of data; some regions may have constant water quality data monitored by sensors whereas some regions only have a small collection of water samples. In this paper, we tackle the problem of spatial-temporal prediction for the cities with only a short period of data collection. We aim to utilize the long-period data from other cities via transfer learning. Different from previous studies that transfer knowledge from one single source city to a target city, we are the first to leverage information from multiple cities to increase the stability of transfer. Specifically, our proposed model is designed as a spatial-temporal network with a meta-learning paradigm. The meta-learning paradigm learns a well-generalized initialization of the spatial-temporal network, which can be effectively adapted to target cities. In addition, a pattern-based spatial-temporal memory is designed to distill long-term temporal information (i.e., periodicity). We conduct extensive experiments on two tasks: traffic (taxi and bike) prediction and water quality prediction. The experiments demonstrate the effectiveness of our proposed model over several competitive baseline models.
Learning to Multitask
Zhang, Yu, Wei, Ying, Yang, Qiang
Multitask learning has shown promising performance in many applications and many multitask models have been proposed. In order to identify an effective multitask model for a given multitask problem, we propose a learning framework called Learning to MultiTask (L2MT). To achieve the goal, L2MT exploits historical multitask experience which is organized as a training set consisting of several tuples, each of which contains a multitask problem with multiple tasks, a multitask model, and the relative test error. Based on such training set, L2MT first uses a proposed layerwise graph neural network to learn task embeddings for all the tasks in a multitask problem and then learns an estimation function to estimate the relative test error based on task embeddings and the representation of the multitask model based on a unified formulation. Given a new multitask problem, the estimation function is used to identify a suitable multitask model. Experiments on benchmark datasets show the effectiveness of the proposed L2MT framework.
Learning to Multitask
Zhang, Yu, Wei, Ying, Yang, Qiang
Multitask learning has shown promising performance in many applications and many multitask models have been proposed. In order to identify an effective multitask model for a given multitask problem, we propose a learning framework called Learning to MultiTask (L2MT). To achieve the goal, L2MT exploits historical multitask experience which is organized as a training set consisting of several tuples, each of which contains a multitask problem with multiple tasks, a multitask model, and the relative test error. Based on such training set, L2MT first uses a proposed layerwise graph neural network to learn task embeddings for all the tasks in a multitask problem and then learns an estimation function to estimate the relative test error based on task embeddings and the representation of the multitask model based on a unified formulation. Given a new multitask problem, the estimation function is used to identify a suitable multitask model. Experiments on benchmark datasets show the effectiveness of the proposed L2MT framework.
Exploiting Coarse-to-Fine Task Transfer for Aspect-level Sentiment Classification
Li, Zheng, Wei, Ying, Zhang, Yu, Zhang, Xiang, Li, Xin, Yang, Qiang
Aspect-level sentiment classification (ASC) aims at identifying sentiment polarities towards aspects in a sentence, where the aspect can behave as a general Aspect Category (AC) or a specific Aspect Term (AT). However, due to the especially expensive and labor-intensive labeling, existing public corpora in AT-level are all relatively small. Meanwhile, most of the previous methods rely on complicated structures with given scarce data, which largely limits the efficacy of the neural models. In this paper, we exploit a new direction named coarse-to-fine task transfer, which aims to leverage knowledge learned from a rich-resource source domain of the coarse-grained AC task, which is more easily accessible, to improve the learning in a low-resource target domain of the fine-grained AT task. To resolve both the aspect granularity inconsistency and feature mismatch between domains, we propose a Multi-Granularity Alignment Network (MGAN). In MGAN, a novel Coarse2Fine attention guided by an auxiliary task can help the AC task modeling at the same fine-grained level with the AT task. To alleviate the feature false alignment, a contrastive feature alignment method is adopted to align aspect-specific feature representations semantically. In addition, a large-scale multi-domain dataset for the AC task is provided. Empirically, extensive experiments demonstrate the effectiveness of the MGAN.
Learning to Multitask
Zhang, Yu, Wei, Ying, Yang, Qiang
Multitask learning has shown promising performance in many applications and many multitask models have been proposed. In order to identify an effective multitask model for a given multitask problem, we propose a learning framework called learning to multitask (L2MT). To achieve the goal, L2MT exploits historical multitask experience which is organized as a training set consists of several tuples, each of which contains a multitask problem with multiple tasks, a multitask model, and the relative test error. Based on such training set, L2MT first uses a proposed layerwise graph neural network to learn task embeddings for all the tasks in a multitask problem and then learns an estimation function to estimate the relative test error based on task embeddings and the representation of the multitask model based on a unified formulation. Given a new multitask problem, the estimation function is used to identify a suitable multitask model. Experiments on benchmark datasets show the effectiveness of the proposed L2MT framework.
Transferable Contextual Bandit for Cross-Domain Recommendation
Liu, Bo (The Hong Kong University of Science and Technology) | Wei, Ying (The Hong Kong University of Science and Technology) | Zhang, Yu (The Hong Kong University of Science and Technology) | Yan, Zhixian (Cheetah Mobile USA) | Yang, Qiang (The Hong Kong University of Science and Technology)
Traditional recommendation systems (RecSys) suffer from two problems: the exploitation-exploration dilemma and the cold-start problem. One solution to solving the exploitation-exploration dilemma is the contextual bandit policy, which adaptively exploits and explores user interests. As a result, the contextual bandit policy achieves increased rewards in the long run. The contextual bandit policy, however, may cause the system to explore more than needed in the cold-start situations, which can lead to worse short-term rewards. Cross-domain RecSys methods adopt transfer learning to leverage prior knowledge in a source RecSys domain to jump start the cold-start target RecSys. To solve the two problems together, in this paper, we propose the first applicable transferable contextual bandit (TCB) policy for the cross-domain recommendation. TCB not only benefits the exploitation but also accelerates the exploration in the target RecSys. TCB's exploration, in turn, helps to learn how to transfer between different domains. TCB is a general algorithm for both homogeneous and heterogeneous domains. We perform both theoretical regret analysis and empirical experiments. The empirical results show that TCB outperforms the state-of-the-art algorithms over time.
Hierarchical Attention Transfer Network for Cross-Domain Sentiment Classification
Li, Zheng (Hong Kong University of Science and Technology) | Wei, Ying (Hong Kong University of Science and Technology) | Zhang, Yu (Hong Kong University of Science and Technology) | Yang, Qiang (Hong Kong University of Science and Technology)
Cross-domain sentiment classification aims to leverage useful information in a source domain to help do sentiment classification in a target domain that has no or little supervised information. Existing cross-domain sentiment classification methods cannot automatically capture non-pivots, i.e., the domain-specific sentiment words, and pivots, i.e., the domain-shared sentiment words, simultaneously. In order to solve this problem, we propose a Hierarchical Attention Transfer Network (HATN) for cross-domain sentiment classification. The proposed HATN provides a hierarchical attention transfer mechanism which can transfer attentions for emotions across domains by automatically capturing pivots and non-pivots. Besides, the hierarchy of the attention mechanism mirrors the hierarchical structure of documents, which can help locate the pivots and non-pivots better. The proposed HATN consists of two hierarchical attention networks, with one named P-net aiming to find the pivots and the other named NP-net aligning the non-pivots by using the pivots as a bridge. Specifically, P-net firstly conducts individual attention learning to provide positive and negative pivots for NP-net. Then, P-net and NP-net conduct joint attention learning such that the HATN can simultaneously capture pivots and non-pivots and realize transferring attentions for emotions across domains. Experiments on the Amazon review dataset demonstrate the effectiveness of HATN.