Not enough data to create a plot.
Try a different view from the menu above.
Wei, Yang
Diverse Policies Recovering via Pointwise Mutual Information Weighted Imitation Learning
Yang, Hanlin, Yao, Jian, Liu, Weiming, Wang, Qing, Qin, Hanmin, Kong, Hansheng, Tang, Kirk, Xiong, Jiechao, Yu, Chao, Li, Kai, Xing, Junliang, Chen, Hongwu, Zhuo, Juchao, Fu, Qiang, Wei, Yang, Fu, Haobo
Recovering a spectrum of diverse policies from a set of expert trajectories is an important research topic in imitation learning. After determining a latent style for a trajectory, previous diverse policies recovering methods usually employ a vanilla behavioral cloning learning objective conditioned on the latent style, treating each state-action pair in the trajectory with equal importance. Based on an observation that in many scenarios, behavioral styles are often highly relevant with only a subset of state-action pairs, this paper presents a new principled method in diverse polices recovery. In particular, after inferring or assigning a latent style for a trajectory, we enhance the vanilla behavioral cloning by incorporating a weighting mechanism based on pointwise mutual information. This additional weighting reflects the significance of each state-action pair's contribution to learning the style, thus allowing our method to focus on state-action pairs most representative of that style. We provide theoretical justifications for our new objective, and extensive empirical evaluations confirm the effectiveness of our method in recovering diverse policies from expert data.
Enhance Reasoning for Large Language Models in the Game Werewolf
Wu, Shuang, Zhu, Liwen, Yang, Tao, Xu, Shiwei, Fu, Qiang, Wei, Yang, Fu, Haobo
This paper presents an innovative framework that integrates Large Language Models (LLMs) with an external Thinker module to enhance the reasoning capabilities of LLM-based agents. Unlike augmenting LLMs with prompt engineering, Thinker directly harnesses knowledge from databases and employs various optimization techniques. The framework forms a reasoning hierarchy where LLMs handle intuitive System-1 tasks such as natural language processing, while the Thinker focuses on cognitive System-2 tasks that require complex logical analysis and domain-specific knowledge. Our framework is presented using a 9-player Werewolf game that demands dual-system reasoning. We introduce a communication protocol between LLMs and the Thinker, and train the Thinker using data from 18800 human sessions and reinforcement learning. Experiments demonstrate the framework's effectiveness in deductive reasoning, speech generation, and online game evaluation. Additionally, we fine-tune a 6B LLM to surpass GPT4 when integrated with the Thinker. This paper also contributes the largest dataset for social deduction games to date.
What Matters in Training a GPT4-Style Language Model with Multimodal Inputs?
Zeng, Yan, Zhang, Hanbo, Zheng, Jiani, Xia, Jiangnan, Wei, Guoqiang, Wei, Yang, Zhang, Yuchen, Kong, Tao
Recent advancements in Large Language Models (LLMs) such as GPT4 have displayed exceptional multi-modal capabilities in following open-ended instructions given images. However, the performance of these models heavily relies on design choices such as network structures, training data, and training strategies, and these choices have not been extensively discussed in the literature, making it difficult to quantify progress in this field. To address this issue, this paper presents a systematic and comprehensive study, quantitatively and qualitatively, on training such models. We implement over 20 variants with controlled settings. Concretely, for network structures, we compare different LLM backbones and model designs. For training data, we investigate the impact of data and sampling strategies. For instructions, we explore the influence of diversified prompts on the instruction-following ability of the trained models. For benchmarks, we contribute the first, to our best knowledge, comprehensive evaluation set including both image and video tasks through crowd-sourcing. Based on our findings, we present Lynx, which performs the most accurate multi-modal understanding while keeping the best multi-modal generation ability compared to existing open-sourced GPT4-style models.
Maximum Entropy Population Based Training for Zero-Shot Human-AI Coordination
Zhao, Rui, Song, Jinming, Haifeng, Hu, Gao, Yang, Wu, Yi, Sun, Zhongqian, Wei, Yang
An AI agent should be able to coordinate with humans to solve tasks. We consider the problem of training a Reinforcement Learning (RL) agent without using any human data, i.e., in a zero-shot setting, to make it capable of collaborating with humans. Standard RL agents learn through self-play. Unfortunately, these agents only know how to collaborate with themselves and normally do not perform well with unseen partners, such as humans. The methodology of how to train a robust agent in a zero-shot fashion is still subject to research. Motivated from the maximum entropy RL, we derive a centralized population entropy objective to facilitate learning of a diverse population of agents, which is later used to train a robust agent to collaborate with unseen partners. The proposed method shows its effectiveness compared to baseline methods, including self-play PPO, the standard Population-Based Training (PBT), and trajectory diversity-based PBT, in the popular Overcooked game environment. We also conduct online experiments with real humans and further demonstrate the efficacy of the method in the real world. A supplementary video showing experimental results is available at https://youtu.be/Xh-FKD0AAKE.
Adversarial Metric Learning
Chen, Shuo, Gong, Chen, Yang, Jian, Li, Xiang, Wei, Yang, Li, Jun
In the past decades, intensive efforts have been put to design various loss functions and metric forms for metric learning problem. These improvements have shown promising results when the test data is similar to the training data. However, the trained models often fail to produce reliable distances on the ambiguous test pairs due to the distribution bias between training set and test set. To address this problem, the Adversarial Metric Learning (AML) is proposed in this paper, which automatically generates adversarial pairs to remedy the distribution bias and facilitate robust metric learning. Specifically, AML consists of two adversarial stages, i.e. confusion and distinguishment. In confusion stage, the ambiguous but critical adversarial data pairs are adaptively generated to mislead the learned metric. In distinguishment stage, a metric is exhaustively learned to try its best to distinguish both the adversarial pairs and the original training pairs. Thanks to the challenges posed by the confusion stage in such competing process, the AML model is able to grasp plentiful difficult knowledge that has not been contained by the original training pairs, so the discriminability of AML can be significantly improved. The entire model is formulated into optimization framework, of which the global convergence is theoretically proved. The experimental results on toy data and practical datasets clearly demonstrate the superiority of AML to the representative state-of-the-art metric learning methodologies.