Plotting

 Wei, Qiyu


Gradient-based Sample Selection for Faster Bayesian Optimization

arXiv.org Machine Learning

Bayesian optimization (BO) is an effective technique for black-box optimization. However, its applicability is typically limited to moderate-budget problems due to the cubic complexity in computing the Gaussian process (GP) surrogate model. In large-budget scenarios, directly employing the standard GP model faces significant challenges in computational time and resource requirements. In this paper, we propose a novel approach, gradient-based sample selection Bayesian Optimization (GSSBO), to enhance the computational efficiency of BO. The GP model is constructed on a selected set of samples instead of the whole dataset. These samples are selected by leveraging gradient information to maintain diversity and representation. We provide a theoretical analysis of the gradient-based sample selection strategy and obtain explicit sublinear regret bounds for our proposed framework. Extensive experiments on synthetic and real-world tasks demonstrate that our approach significantly reduces the computational cost of GP fitting in BO while maintaining optimization performance comparable to baseline methods.


SynGraph: A Dynamic Graph-LLM Synthesis Framework for Sparse Streaming User Sentiment Modeling

arXiv.org Artificial Intelligence

User reviews on e-commerce platforms exhibit dynamic sentiment patterns driven by temporal and contextual factors. Traditional sentiment analysis methods focus on static reviews, failing to capture the evolving temporal relationship between user sentiment rating and textual content. Sentiment analysis on streaming reviews addresses this limitation by modeling and predicting the temporal evolution of user sentiments. However, it suffers from data sparsity, manifesting in temporal, spatial, and combined forms. In this paper, we introduce SynGraph, a novel framework designed to address data sparsity in sentiment analysis on streaming reviews. SynGraph alleviates data sparsity by categorizing users into mid-tail, long-tail, and extreme scenarios and incorporating LLM-augmented enhancements within a dynamic graph-based structure. Experiments on real-world datasets demonstrate its effectiveness in addressing sparsity and improving sentiment modeling in streaming reviews.


Wafer Map Defect Patterns Semi-Supervised Classification Using Latent Vector Representation

arXiv.org Artificial Intelligence

As the globalization of semiconductor design and manufacturing processes continues, the demand for defect detection during integrated circuit fabrication stages is becoming increasingly critical, playing a significant role in enhancing the yield of semiconductor products. Traditional wafer map defect pattern detection methods involve manual inspection using electron microscopes to collect sample images, which are then assessed by experts for defects. This approach is labor-intensive and inefficient. Consequently, there is a pressing need to develop a model capable of automatically detecting defects as an alternative to manual operations. In this paper, we propose a method that initially employs a pre-trained VAE model to obtain the fault distribution information of the wafer map. This information serves as guidance, combined with the original image set for semi-supervised model training. During the semi-supervised training, we utilize a teacher-student network for iterative learning. The model presented in this paper is validated on the benchmark dataset WM-811K wafer dataset. The experimental results demonstrate superior classification accuracy and detection performance compared to state-of-the-art models, fulfilling the requirements for industrial applications. Compared to the original architecture, we have achieved significant performance improvement.


A Deeply Supervised Semantic Segmentation Method Based on GAN

arXiv.org Artificial Intelligence

In recent years, the field of intelligent transportation has witnessed rapid advancements, driven by the increasing demand for automation and efficiency in transportation systems. Traffic safety, one of the tasks integral to intelligent transport systems, requires accurately identifying and locating various road elements, such as road cracks, lanes, and traffic signs. Semantic segmentation plays a pivotal role in achieving this task, as it enables the partition of images into meaningful regions with accurate boundaries. In this study, we propose an improved semantic segmentation model that combines the strengths of adversarial learning with state-of-the-art semantic segmentation techniques. The proposed model integrates a generative adversarial network (GAN) framework into the traditional semantic segmentation model, enhancing the model's performance in capturing complex and subtle features in transportation images. The effectiveness of our approach is demonstrated by a significant boost in performance on the road crack dataset compared to the existing methods, \textit{i.e.,} SEGAN. This improvement can be attributed to the synergistic effect of adversarial learning and semantic segmentation, which leads to a more refined and accurate representation of road structures and conditions. The enhanced model not only contributes to better detection of road cracks but also to a wide range of applications in intelligent transportation, such as traffic sign recognition, vehicle detection, and lane segmentation.