Plotting

 Weck, Benno


CrossMuSim: A Cross-Modal Framework for Music Similarity Retrieval with LLM-Powered Text Description Sourcing and Mining

arXiv.org Artificial Intelligence

--Music similarity retrieval is fundamental for managing and exploring relevant content from large collections in streaming platforms. This paper presents a novel cross-modal contrastive learning framework that leverages the open-ended nature of text descriptions to guide music similarity modeling, addressing the limitations of traditional uni-modal approaches in capturing complex musical relationships. T o overcome the scarcity of high-quality text-music paired data, this paper introduces a dual-source data acquisition approach combining online scraping and LLM-based prompting, where carefully designed prompts leverage LLMs' comprehensive music knowledge to generate contextually rich descriptions. Extensive experiments demonstrate that the proposed framework achieves significant performance improvements over existing benchmarks through objective metrics, subjective evaluations, and real-world A/B testing on the Huawei Music streaming platform. Music similarity retrieval plays an important role in many music information retrieval (MIR) tasks, such as music recommendation [1], personalized playlist generation [2] and background music replacement in video editing [3], [4]. As digital music collections rapidly expand within streaming platforms, accurately identifying similarities between musical pieces has become critical for managing and exploring relevant content from such large collections efficiently.


The language of sound search: Examining User Queries in Audio Search Engines

arXiv.org Artificial Intelligence

This study examines textual, user-written search queries within the context of sound search engines, encompassing various applications such as foley, sound effects, and general audio retrieval. Current research inadequately addresses real-world user needs and behaviours in designing text-based audio retrieval systems. To bridge this gap, we analysed search queries from two sources: a custom survey and Freesound website query logs. The survey was designed to collect queries for an unrestricted, hypothetical sound search engine, resulting in a dataset that captures user intentions without the constraints of existing systems. This dataset is also made available for sharing with the research community. In contrast, the Freesound query logs encompass approximately 9 million search requests, providing a comprehensive view of real-world usage patterns. Our findings indicate that survey queries are generally longer than Freesound queries, suggesting users prefer detailed queries when not limited by system constraints. Both datasets predominantly feature keyword-based queries, with few survey participants using full sentences. Key factors influencing survey queries include the primary sound source, intended usage, perceived location, and the number of sound sources. These insights are crucial for developing user-centred, effective text-based audio retrieval systems, enhancing our understanding of user behaviour in sound search contexts.


WikiMuTe: A web-sourced dataset of semantic descriptions for music audio

arXiv.org Artificial Intelligence

Multi-modal deep learning techniques for matching free-form text with music have shown promising results in the field of Music Information Retrieval (MIR). Prior work is often based on large proprietary data while publicly available datasets are few and small in size. In this study, we present WikiMuTe, a new and open dataset containing rich semantic descriptions of music. The data is sourced from Wikipedia's rich catalogue of articles covering musical works. Using a dedicated text-mining pipeline, we extract both long and short-form descriptions covering a wide range of topics related to music content such as genre, style, mood, instrumentation, and tempo. To show the use of this data, we train a model that jointly learns text and audio representations and performs cross-modal retrieval. The model is evaluated on two tasks: tag-based music retrieval and music auto-tagging. The results show that while our approach has state-of-the-art performance on multiple tasks, but still observe a difference in performance depending on the data used for training.


The Song Describer Dataset: a Corpus of Audio Captions for Music-and-Language Evaluation

arXiv.org Artificial Intelligence

We introduce the Song Describer dataset (SDD), a new crowdsourced corpus of high-quality audio-caption pairs, designed for the evaluation of music-and-language models. The dataset consists of 1.1k human-written natural language descriptions of 706 music recordings, all publicly accessible and released under Creative Common licenses. To showcase the use of our dataset, we benchmark popular models on three key music-and-language tasks (music captioning, text-to-music generation and music-language retrieval). Our experiments highlight the importance of cross-dataset evaluation and offer insights into how researchers can use SDD to gain a broader understanding of model performance.


Data leakage in cross-modal retrieval training: A case study

arXiv.org Artificial Intelligence

The recent progress in text-based audio retrieval was largely propelled by the release of suitable datasets. Since the manual creation of such datasets is a laborious task, obtaining data from online resources can be a cheap solution to create large-scale datasets. We study the recently proposed SoundDesc benchmark dataset, which was automatically sourced from the BBC Sound Effects web page. In our analysis, we find that SoundDesc contains several duplicates that cause leakage of training data to the evaluation data. This data leakage ultimately leads to overly optimistic retrieval performance estimates in previous benchmarks. We propose new training, validation, and testing splits for the dataset that we make available online. To avoid weak contamination of the test data, we pool audio files that share similar recording setups. In our experiments, we find that the new splits serve as a more challenging benchmark.