Plotting

 Weber, Ingmar


A Social Media Based Examination of the Effects of Counseling Recommendations after Student Deaths on College Campuses

AAAI Conferences

Student deaths on college campuses, whether brought about by a suicide or an uncontrollable incident, have serious repercussions for the mental wellbeing of students. Consequently, many campus administrators implement post-crisis intervention measures to promote student-centric mental health support. Information about these measures, which we refer to as "counseling recommendations", are often shared via electronic channels, including social media. However, the current ability to assess the effects of these recommendations on post-crisis psychological states is limited. We propose a causal analysis framework to examine the effects of these counseling recommendations after student deaths. We leverage a dataset from 174 Reddit campus communities and ~400M posts of ~350K users. Then we employ statistical modeling and natural language analysis to quantify the psychosocial shifts in behavioral, cognitive, and affective expression of grief in individuals who are "exposed" to (comment on) the counseling recommendations, compared to that in a matched control cohort. Drawing on crisis and psychology research, we find that the exposed individuals show greater grief, psycholinguistic, and social expressiveness, providing evidence of a healing response to crisis and thereby positive psychological effects of the counseling recommendations. We discuss the implications of our work in supporting post-crisis rehabilitation and intervention efforts on college campuses.


Face-to-BMI: Using Computer Vision to Infer Body Mass Index on Social Media

AAAI Conferences

A person's weight status can have profound implications on their life, ranging from mental health, to longevity, to financial income. At the societal level, "fat shaming'" and other forms of "sizeism'' are a growing concern, while increasing obesity rates are linked to ever raising healthcare costs. For these reasons, researchers from a variety of backgrounds are interested in studying obesity from all angles. To obtain data, traditionally, a person would have to accurately self-report their body-mass index (BMI) or would have to see a doctor to have it measured. In this paper, we show how computer vision can be used to infer a person's BMI from social media images. We hope that our tool, which we release, helps to advance the study of social aspects related to body weight.


Automated Hate Speech Detection and the Problem of Offensive Language

AAAI Conferences

A key challenge for automatic hate-speech detection on social media is the separation of hate speech from other instances of offensive language. Lexical detection methods tend to have low precision because they classify all messages containing particular terms as hate speech and previous work using supervised learning has failed to distinguish between the two categories. We used a crowd-sourced hate speech lexicon to collect tweets containing hate speech keywords. We use crowd-sourcing to label a sample of these tweets into three categories: those containing hate speech, only offensive language, and those with neither. We train a multi-class classifier to distinguish between these different categories. Close analysis of the predictions and the errors shows when we can reliably separate hate speech from other offensive language and when this differentiation is more difficult. We find that racist and homophobic tweets are more likely to be classified as hate speech but that sexist tweets are generally classified as offensive. Tweets without explicit hate keywords are also more difficult to classify.


You Are What Apps You Use: Demographic Prediction Based on User's Apps

AAAI Conferences

Understanding the demographics of app users is crucial, for example, for app developers, who wish to target their advertisements more effectively. Our work addresses this need by studying the predictability of user demographics based on the list of a user's apps which is readily available to many app developers. We extend previous work on the problem on three frontiers: (1) We predict new demographics (age, race, and income) and analyze the most informative apps for four demographic attributes included in our analysis. The most predictable attribute is gender (82.3 % accuracy), whereas the hardest to predict is income (60.3 % accuracy). (2) We compare several dimensionality reduction methods for high-dimensional app data, finding out that an unsupervised method yields superior results compared to aggregating the apps at the app category level, but the best results are obtained simply by the raw list of apps. (3) We look into the effect of the training set size and the number of apps on the predictability and show that both of these factors have a large impact on the prediction accuracy. The predictability increases, or in other words, a user's privacy decreases, the more apps the user has used, but somewhat surprisingly, after 100 apps, the prediction accuracy starts to decrease.